Anesthesiology
-
The perioperative surgical home model highlights the need for trainees to include modalities that are focused on the entire perioperative experience. The focus of this study was to design, introduce, and evaluate the integration of a whole-body point-of-care (POC) ultrasound curriculum (Focused periOperative Risk Evaluation Sonography Involving Gastroabdominal Hemodynamic and Transthoracic ultrasound) into residency training. ⋯ Results suggest that a whole-body POC ultrasound curriculum can be effectively taught to anesthesiology residents and that this training may provide clinical benefit. These results should be evaluated within the context of the perioperative surgical home.
-
A wealth of data shows neuronal demise after general anesthesia in the very young rodent brain. Herein, the authors apply proton magnetic resonance spectroscopy (1HMRS), testing the hypothesis that neurotoxic exposure during peak synaptogenesis can be tracked via changes in neuronal metabolites. ⋯ The authors demonstrated that normal [NAA] increase from PND8 to PND9 was impeded in sevoflurane-exposed rats when exposed at PND7; however, not impeded when exposed on PND15. Furthermore, the authors showed that noninvasive 1HMRS is sufficiently sensitive to detect subtle differences in developmental time trajectory of [NAA]. This is potentially clinically relevant because 1HMRS can be applied across species and may be useful in providing evidence of neurotoxicity in the human neonatal brain.
-
Mice lacking calsequestrin-1 (CASQ1-null), a Ca-binding protein that modulates the activity of Ca release in the skeletal muscle, exhibit lethal hypermetabolic episodes that resemble malignant hyperthermia in humans when exposed to halothane or heat stress. ⋯ These studies provide a deeper understanding of the mechanisms that underlie hyperthermic crises in CASQ1-deficient muscle and demonstrate that antioxidant pretreatment may prevent them.
-
Perioperative bronchospasm refractory to β agonists continues to challenge anesthesiologists and intensivists. The TMEM16A calcium-activated chloride channel modulates airway smooth muscle (ASM) contraction. The authors hypothesized that TMEM16A antagonists would relax ASM contraction by modulating membrane potential and calcium flux. ⋯ TMEM16A antagonists work synergistically with β agonists and through a novel pathway of interrupting ion flux at both the plasma membrane and sarcoplasmic reticulum to acutely relax human ASM.
-
During mechanical ventilation, stress and strain may be locally multiplied in an inhomogeneous lung. The authors investigated whether, in healthy lungs, during high pressure/volume ventilation, injury begins at the interface of naturally inhomogeneous structures as visceral pleura, bronchi, vessels, and alveoli. The authors wished also to characterize the nature of the lesions (collapse vs. consolidation). ⋯ Most of the computed tomography scan new densities developed in nonhomogeneous lung regions. The damage in this model was primarily located in the interstitial space, causing alveolar collapse and consequent high recruitability.