Anesthesiology
-
Studies in developing animals have shown that anesthetic agents can lead to neuronal cell death and learning disabilities when administered early in life. Development of human embryonic stem cell-derived neurons has provided a valuable tool for understanding the effects of anesthetics on developing human neurons. Unbalanced mitochondrial fusion and fission lead to various pathological conditions including neurodegeneration. The aim of this study was to dissect the role of mitochondrial dynamics in propofol-induced neurotoxicity. ⋯ These data demonstrate for the first time that propofol-induced neurotoxicity occurs through a mitochondrial fission/mPTP-mediated pathway.
-
Cerebral blood flow (CBF) is rigorously regulated by various powerful mechanisms to safeguard the match between cerebral metabolic demand and supply. The question of how a change in cardiac output (CO) affects CBF is fundamental, because CBF is dependent on constantly receiving a significant proportion of CO. The authors reviewed the studies that investigated the association between CO and CBF in healthy volunteers and patients with chronic heart failure. ⋯ Given that CBF regulation is multifactorial but the various processes must exert their effects on the cerebral circulation simultaneously, the authors propose a conceptual framework that integrates the various CBF-regulating processes at the level of cerebral arteries/arterioles while still maintaining autoregulation. The clinical implications pertinent to the effect of CO on CBF are discussed. Outcome research relating to the management of CO and CBF in high-risk patients or during high-risk surgeries is needed.