Anesthesiology
-
Inflammation is a key element in the pathophysiology of cerebral ischemia. This study investigated the role of N-Myc downstream-regulated gene-2 in nuclear transcription factor κB-mediated inflammation in ischemia models. ⋯ Astrocytic N-Myc downstream-regulated gene-2 is up-regulated after cerebral ischemia and is involved in nuclear transcription factor κB-mediated inflammation. Pyrrolidinedithiocarbamate alleviates ischemia-induced neuronal injury and hippocampal-dependent cognitive impairment by inhibiting increases in N-Myc downstream-regulated gene-2 expression and N-Myc downstream-regulated gene-2-mediated inflammation.
-
Bupivacaine induces central neurotoxicity at lower blood concentrations than cardiovascular toxicity. However, central sensitivity to bupivacaine is poorly understood. The toxicity mechanism might be related to glutamate-induced excitotoxicity in hippocampal cells. ⋯ In primary rat hippocampal astrocyte and neuron cocultures, clinically relevant concentrations of bupivacaine selectively impair astrocytic mitochondrial function, thereby suppressing glutamate uptake, which indirectly potentiates glutamate-induced increases in [Ca]i in neurons.
-
The α2-adrenergic sedative/anesthetic agent dexmedetomidine exerts biphasic effects on isolated arteries, causing endothelium-dependent relaxations at concentrations at or below 30 nM, followed by contractions at higher concentrations. L-arginine is a common substrate of endothelial nitric oxide synthase and arginases. This study was designed to investigate the role of L-arginine in modulating the overall vascular response to dexmedetomidine. ⋯ These results suggest that when vascular nitric oxide homeostasis is impaired, the potentiation of the vasoconstrictor effect of dexmedetomidine by L-arginine depends on arginase activity and the production of urea and ornithine.