Toxicon : official journal of the International Society on Toxinology
-
In the four decades since toxinologists in Australia and elsewhere started to investigate the active constituents of venomous cone snails, a wealth of information has emerged on the various classes of peptides and proteins that make their venoms such potent bioactive cocktails. This article provides an overview of the current state of knowledge of these venom constituents, several of which are of interest as potential human therapeutics as a consequence of their high potency and exquisite target specificity. With the promise of as many as 50,000 venom components across the entire Conus genus, many more interesting peptides can be anticipated.
-
The seas and oceans around Australia harbour numerous venomous jellyfish. Chironex fleckeri, the box jellyfish, is the most lethal causing rapid cardiorespiratory depression and although its venom has been characterised, its toxins remain to be identified. A moderately effective antivenom exists which is also partially effective against another chirodropid, Chiropsalmus sp. ⋯ The venom contains a sodium channel modulator. Two species of Physalia are present and although one is potentially lethal, has not caused death in Australian waters. Other significant genera of jellyfish include Tamoya, Pelagia, Cyanea, Aurelia and Chyrosaora.
-
Despite the wealth of anecdotes and case reports there are fundamental questions of management of snakebite in Australia that remain unresolved or for which the current evidence is limited. The efficacy in the field, potential limitations and possibility of improvements in pressure immobilisation first aid need objective studies in humans. Optimal bandage sizes, stretch and pressure for different sized limbs need further evaluation, as does the use of pressure pads. ⋯ Confirmation of clinical efficacy and dosing recommendations for use of tiger snake (Notechis) antivenom in envenoming from Australian copperhead (Austrelaps spp.), broad headed (Hoplocephalus spp.) and rough-scaled snakes (Tropidechis carinatus) also require formal study in patients. Other examples of clinical relevance of cross-specificity of current and future monospecific antivenoms and whether there are geographical variations in antivenom responses within species will require elucidation. Prospective multicentre collaborative studies with predefined data collection and serial venom level assays are proposed as the way forward in Australia to help resolve therapeutic uncertainties and to establish a firmer evidence base for best-practice treatment guidelines for Australasian elapid snakebite.