Anesthesia and analgesia
-
Anesthesia and analgesia · Jan 2011
ReviewSpecial article: general anesthetic gases and the global environment.
General anesthetics are administered to approximately 50 million patients each year in the United States. Anesthetic vapors and gases are also widely used in dentists' offices, veterinary clinics, and laboratories for animal research. All the volatile anesthetics that are currently used are halogenated compounds destructive to the ozone layer. ⋯ Studies suggest that the influence of halogenated anesthetics on global warming will be of increasing relative importance given the decreasing level of chlorofluorocarbons globally. Despite these nonnegligible pollutant effects of the anesthetics, no data on the production or emission of these gases and vapors are publicly available. The primary goal of this article is to critically review the current data on the potential effects of general anesthetics on the global environment and to describe possible alternatives and new technologies that may prevent these gases from being discharged into the atmosphere.
-
Anesthesia and analgesia · Jan 2011
Review Comparative StudyThe efficacy and safety of colloid resuscitation in the critically ill.
Despite evidence from clinical studies and meta-analyses that resuscitation with colloids or crystalloids is equally effective in critically ill patients, and despite reports from high-quality clinical trials and meta-analyses regarding nephrotoxic effects, increased risk of bleeding, and a trend toward higher mortality in these patients after the use of hydroxyethyl starch (HES) solutions, colloids remain popular and the use of HES solutions is increasing worldwide. We investigated the major rationales for colloid use, namely that colloids are more effective plasma expanders than crystalloids, that synthetic colloids are as safe as albumin, that HES solutions have the best risk/benefit profile among the synthetic colloids, and that the third-generation HES 130/0.4 has fewer adverse effects than older starches. Evidence from clinical studies shows that comparable resuscitation is achieved with considerably less crystalloid volumes than frequently suggested, namely, <2-fold the volume of colloids. ⋯ Safe threshold doses need to be determined in studies in high-risk patients and observation periods of 90 days. Such studies on HES 130/0.4 are still lacking despite its widespread and increasing use. Because there are safer and equally effective alternatives in the form of crystalloids, use of synthetic colloids should be avoided except in the context of clinical studies.