The Annals of thoracic surgery
-
Comparative Study
Circulatory dynamics during surface-induced hypothermia under halothane-ether azeotrope anesthesia.
Circulatory dynamics during surface- induced deep hypothermia using the halothane-diethyl ether azeotrope in 100% oxygen (O2) without circulatory arrest and 95% O2 and 5% carbon dioxide (CO2) with and without 60 minutes of arrest were evaluated in 15 adult mongrel dogs. Mean arterial pressure was lower in animals given 5% CO2 than in animals given 100% O2 during cooling. Cardiac output in the 5% CO2 groups increased until 30 degrees C cooling and then gradually decreased to 29% of control at 20 degrees C. ⋯ Hemodynamic variables in animals given 5% CO2 did not reveal significant differences in arrested versus nonarrested animals during early rewarming. However, with further warming, cardiac output, stroke volume, left ventricular stroke work, and mean pulmonary arterial and pulmonary artery wedge pressures were lower, and systemic and pulmonary vascular resistances were higher in the arrest group. We conclude that the improved results with halothane-diethyl ether azeotrope in 95% O2 and 5% CO2 during surface hypothermia are due to a greater cardiac output and reduced peripheral vascular resistance.