Atherosclerosis
-
Review
Does nonalcoholic fatty liver disease cause cardiovascular disease? Current knowledge and gaps.
Non-alcoholic fatty liver disease (NAFLD) is highly prevalent and includes a spectrum of abnormalities ranging from steatosis to cirrhosis. In this review, we address recent evidence and limitations of studies that evaluated the association of NAFLD with atherosclerotic cardiovascular disease. NAFLD is considered an ectopic fat deposit associated with metabolic (insulin resistance, hyperglycemia and dyslipidemia), inflammatory, coagulation and blood pressure disturbances. ⋯ Therefore, currently, it is not possible to prove a causal relation between NAFLD and cardiovascular disease. Furthermore, there is presently no evidence that NAFLD diagnosis can be used as a tool to improve cardiovascular risk stratification and modify treatment. Specific treatments for NAFLD are being developed and must be tested prospectively in adequately designed trials to determine the potential of reducing both hepatic and cardiovascular diseases and to prove whether NAFLD is indeed a cause of atherosclerosis.
-
Review Practice Guideline
Identification and diagnosis of patients with familial chylomicronaemia syndrome (FCS): Expert panel recommendations and proposal of an "FCS score".
Familial chylomicronaemia syndrome (FCS) is a rare, inherited disorder characterised by impaired clearance of triglyceride (TG)-rich lipoproteins from plasma, leading to severe hypertriglyceridaemia (HTG) and a markedly increased risk of acute pancreatitis. It is due to the lack of lipoprotein lipase (LPL) function, resulting from recessive loss of function mutations in the genes coding LPL or its modulators. A large overlap in the phenotype between FCS and multifactorial chylomicronaemia syndrome (MCS) contributes to the inconsistency in how patients are diagnosed and managed worldwide, whereas the incidence of acute hypertriglyceridaemic pancreatitis is more frequent in FCS. ⋯ Considering 53 FCS patients from three cohorts and 52 MCS patients from three cohorts, the overall sensitivity of the FCS score (≥10) was 88% (95% confidence interval [CI]: 0.76, 0.97) with an overall specificity of 85% (95% CI: 0.75, 0.94). Receiver operating characteristic curve area was 0.91. Pragmatic clinical scoring, by standardising diagnosis, may help differentiate FCS from MCS, may alleviate the need for systematic genotyping in patients with severe HTG and may help identify high-priority candidates for genotyping.
-
Microvesicles are formed under many circumstances, especially in atheromatous plaques. Erythrocyte-derived microvesicles (ErMVs) have been proved to promote atherosclerosis by promoting hypercoagulation, mediating inflammation and inducing cell adhesion. Several clinical studies have reported potential roles of ErMVs in cardiovascular disease diagnosis, but the current understanding of ErMVs remains insufficient. In this paper, we will review current research on the formation and degradation of ErMVs and the possible effects of ErMVs in atherosclerosis, discuss potential clinical applications in cardiovascular disease, and hope to raise awareness of the relation with atherosclerosis.
-
Meta Analysis
Efficacy and safety of long-term treatment with statins for coronary heart disease: A Bayesian network meta-analysis.
Our study aims to evaluate the efficacy and safety of long-term treatment of statins for coronary heart disease (CHD). ⋯ Statins significantly reduced levels of blood lipids, with a high dose of atorvastatin being the most effective in blood-lipid level modification. Statins reduced the risk of CHD mortality and all-cause mortality, with atorvastatin and fluvastatin being the most effective in reducing the risk of CHD mortality and all-cause mortality. Statins increased the risk of muscle disease and kidney damage.
-
Increasing knowledge about the influence of genetic variation on human health and growing availability of reliable, cost-effective genetic testing have spurred the implementation of genomic medicine in the clinic. As defined by the National Human Genome Research Institute (NHGRI), genomic medicine uses an individual's genetic information in his or her clinical care, and has begun to be applied effectively in areas such as cancer genomics, pharmacogenomics, and rare and undiagnosed diseases. In 2011 NHGRI published its strategic vision for the future of genomic research, including an ambitious research agenda to facilitate and promote the implementation of genomic medicine. ⋯ These meetings have identified and begun to address significant obstacles to implementation, such as lack of evidence of efficacy, limited availability of genomics expertise and testing, lack of standards, and difficulties in integrating genomic results into electronic medical records. The six research and dissemination initiatives comprising NHGRI's genomic research portfolio are designed to speed the evaluation and incorporation, where appropriate, of genomic technologies and findings into routine clinical care. Actual adoption of successful approaches in clinical care will depend upon the willingness, interest, and energy of professional societies, practitioners, patients, and payers to promote their responsible use and share their experiences in doing so.