The Journal of general physiology
-
Cyclic nucleotide-gated (CNG) channels bind cGMP or cAMP in a cytoplasmic ligand-binding domain (BD), and this binding typically increases channel open probability (P(o)) without inducing desensitization. However, the catfish CNGA2 (fCNGA2) subtype exhibits bimodal agonism, whereby steady-state P(o) increases with initial cGMP-binding events ("pro" action) up to a maximum of 0.4, but decreases with subsequent cGMP-binding events ("con" action) occurring at concentrations >3 mM. We sought to clarify if low pro-action efficacy was either necessary or sufficient for con action to operate. ⋯ However, this apparent attenuation of con action could be explained by an increase in the efficacy of pro action for all agonists, controlled by a conserved "phosphate-binding cassette" motif that contacts ligand; this produces high P(o) values that are less sensitive to shifts in gating equilibrium. In contrast, substituting a single valine in the N-terminal helix αA abolished con action (g((30 mM cGMP))/g((3 mM cGMP)) increased to 1.26 ± 0.24; n = 7) without large increases in pro-action efficacy. Our work dissociates the two functional features of low pro-action efficacy and con action, and moreover identifies a separate structural determinant for each.