The Journal of biological chemistry
-
Contraction is crucial in maintaining the differentiated phenotype of myofibroblasts. Contraction is an energy-dependent mechanism that relies on the production of ATP by mitochondria and/or glycolysis. Although the role of mitochondrial biogenesis in the adaptive responses of skeletal muscle to exercise is well appreciated, mechanisms governing energetic adaptation of myofibroblasts are not well understood. ⋯ Inhibition of p38 MAPK decreased accumulation of active peroxisome proliferator-activated receptor γ coactivator 1α in the nucleus and altered the translocation of mitochondrial transcription factor A to the mitochondria. Genetic or pharmacologic approaches that block mitochondrial biogenesis or glycolysis resulted in decreased contraction and reduced expression of TGF-β1-induced α-smooth muscle actin and collagen α-2(I) but not of fibronectin or collagen α-1(I). These data indicate a critical role for TGF-β1-induced metabolic reprogramming in regulating myofibroblast-specific contractile signaling and support the concept of integrating bioenergetics with cellular differentiation.