Journal of neurochemistry
-
Journal of neurochemistry · Apr 2005
Comparative StudyFunctional SDF1 alpha/CXCR4 signaling in the developing spinal cord.
Stromal cell-derived factor (SDF1) and its cognate receptor CXCR4 have been shown to play a central role in the development of the cerebellum, hippocampus, and neocortex. However, little is known about the functions of SDF1/CXCR4 in early spinal cord progenitor cell differentiation. Here, we show that a functional SDF1alpha/CXCR4 signaling pathway is present in developing spinal cord cells (a spliced variant of SDF1). ⋯ Furthermore, SDF1alpha induced chemotaxis in both neural and glial progenitors in in vitro migration assays. Pre-treatment of the cells with either pertussis toxin or PD98059 completely inhibited SDF1alpha-induced chemotaxis. Thus, our data suggest that SDF1alpha may function through a CXCR4/ERK/Ets-linked signalling pathway in spinal cord neural development to modulate migration of progenitor cells.