Journal of neurochemistry
-
Journal of neurochemistry · Nov 2011
Ethanol causes the redistribution of L1 cell adhesion molecule in lipid rafts.
Fetal alcohol spectrum disorder is estimated to affect 1% of live births. The similarities between children with fetal alcohol syndrome and those with mutations in the gene encoding L1 cell adhesion molecule (L1) implicates L1 as a target of ethanol developmental neurotoxicity. Ethanol specifically inhibits the neurite outgrowth promoting function of L1 at pharmacologic concentrations. ⋯ Increasing chain length of the alcohol demonstrates the same cutoff as that previously shown for inhibition of L1-L1 binding. In addition, in cerebellar granule neurons in which lipid rafts are disrupted with methyl-beta-cyclodextrin, the rate of L1-mediated neurite outgrowth on L1-Fc is reduced to background rate and that this background rate is not ethanol sensitive. These data indicate that ethanol may inhibit L1-mediated neurite outgrowth by retarding L1 trafficking through a lipid raft compartment.
-
Journal of neurochemistry · Nov 2011
Oxygen-glucose deprivation and interleukin-1α trigger the release of perlecan LG3 by cells of neurovascular unit.
Two of the main stresses faced by cells at the neurovascular unit (NVU) as an immediate result of cerebral ischemia are oxygen-glucose deprivation (OGD)/reperfusion and inflammatory stress caused by up regulation of IL-1. As a result of these stresses, perlecan, an important component of the NVU extracellular matrix, is highly proteolyzed. In this study, we describe that focal cerebral ischemia in rats results in increased generation of laminin globular domain 3 (LG3), the c-terminal bioactive fragment of perlecan. ⋯ IL-1α and IL-1β treatment tended to have opposite effects on NVU cells. While IL-1α increased or had minimal to no effect on LG3 generation, high concentrations of IL-1β decreased it in most cells studied. Finally, LG3 was determined to be neuroprotective and anti-proliferative in brain endothelial cells, suggesting a possible role for the generation of LG3 in the ischemic brain.
-
Journal of neurochemistry · Nov 2011
Comparative StudyDiabetic neuropathy enhances voltage-activated Ca2+ channel activity and its control by M4 muscarinic receptors in primary sensory neurons.
Painful neuropathy is one of the most serious complications of diabetes and remains difficult to treat. The muscarinic acetylcholine receptor (mAChR) agonists have a profound analgesic effect on painful diabetic neuropathy. Here we determined changes in T-type and high voltage-activated Ca(2+) channels (HVACCs) and their regulation by mAChRs in dorsal root ganglion (DRG) neurons in a rat model of diabetic neuropathy. ⋯ Additionally, the mRNA and protein levels of M(4), but not M(2), in the DRG were significantly greater in diabetic than in control rats. Our findings suggest that diabetic neuropathy potentiates the activity of T-type and HVACCs in primary sensory neurons. M(4) mAChRs are up-regulated in DRG neurons and probably account for increased muscarinic analgesic effects in diabetic neuropathic pain.
-
Journal of neurochemistry · Nov 2011
α-Synuclein promotes clathrin-mediated NMDA receptor endocytosis and attenuates NMDA-induced dopaminergic cell death.
Abnormalities of α-synuclein (α-syn) and NMDA receptors (NMDARs) are implicated in the pathogenesis of Parkinson's disease. However, how these proteins interact with each other has not been elucidated. Here, the effect of α-syn on NMDARs was investigated by examining the alterations of surface NMDAR NR1 subunits in MES23.5 dopaminergic cells transfected with the human α-syn gene as well as in cells treated with extracellularly added human α-syn. ⋯ Both the α-syn-transfected cells and α-syn-treated cells exhibited increased intracellular α-syn levels and reduced surface NR1 without altering the total NR1. The α-syn-induced surface NR1 reduction was accompanied by suppression of NMDA-elicited intracellular Ca(2+) elevation and reductions of NMDA-induced caspase 3 activation and cell death, which was abolished by hypotonic shock and K(+) depletion, a procedure that blocks clathrin-mediated endocytosis, and by suppression of RAB5B expression with anti-RAB5B oligonucleotides. The data obtained provide evidence for the first time that α-syn may promote clathrin-mediated NMDAR endocytosis.