Lancet
-
Mechanical ventilation supports gas exchange and alleviates the work of breathing when the respiratory muscles are overwhelmed by an acute pulmonary or systemic insult. Although mechanical ventilation is not generally considered a treatment for acute respiratory failure per se, ventilator management warrants close attention because inappropriate ventilation can result in injury to the lungs or respiratory muscles and worsen morbidity and mortality. Key clinical challenges include averting intubation in patients with respiratory failure with non-invasive techniques for respiratory support; delivering lung-protective ventilation to prevent ventilator-induced lung injury; maintaining adequate gas exchange in severely hypoxaemic patients; avoiding the development of ventilator-induced diaphragm dysfunction; and diagnosing and treating the many pathophysiological mechanisms that impair liberation from mechanical ventilation. Personalisation of mechanical ventilation based on individual physiological characteristics and responses to therapy can further improve outcomes.
-
In this Series paper, we review the current evidence for the use of high-flow oxygen therapy, inhaled gases, and aerosols in the care of critically ill patients. The available evidence supports the use of high-flow nasal cannulae for selected patients with acute hypoxaemic respiratory failure. Heliox might prevent intubation or improve gas flow in mechanically ventilated patients with severe asthma. ⋯ Inhaled prostacyclins, similar to inhaled nitric oxide, are not recommended for routine use in patients with ARDS, but can be used to improve oxygenation in patients who are not adequately stabilised with traditional therapies. Aerosolised bronchodilators are useful in mechanically ventilated patients with asthma and chronic obstructive pulmonary disease, but are not recommended for those with ARDS. Use of aerosolised antibiotics for ventilator-associated pneumonia and ventilator-associated tracheobronchitis shows promise, but the delivered dose can be highly variable if proper attention is not paid to the delivery method.
-
In the past several years, as worldwide morbidity and mortality due to malaria have continued to decrease, the global malaria community has grown increasingly supportive of the idea of malaria eradication. In 2015, three noteworthy global documents were released-the WHO's Global Technical Strategy for Malaria 2016-2030, the Roll Back Malaria Partnership's Action and Investment to defeat Malaria 2016-2030, and From Aspiration to Action: What Will It Take to End Malaria?-that collectively advocate for malaria elimination and eradication and outline key operational, technical, and financial strategies to achieve progress toward malaria eradication. ⋯ Additionally, although global support and guidance is essential for success, malaria elimination and eradication efforts will ultimately be driven at the country level and achieved in a collaborative manner, region by region. In this Review, we examine the present status of the 35 malaria-eliminating countries, summarise existing national and regional elimination goals and the regional frameworks that support them, and identify the most crucial enabling factors and potential barriers to achieving eradication by a theoretical end date of 2040.
-
Testicular germ cell tumours are at the crossroads of developmental and neoplastic processes. Their cause has not been fully elucidated but differences in incidences suggest that a combination of genetic and environment factors are involved, with environmental factors predominating early in life. Substantial progress has been made in understanding genetic susceptibility in the past 5 years on the basis of the results of large genome-wide association studies. ⋯ Because the tumours occur mainly in young men, preservation of reproductive function, quality of life after treatment, and late effects are crucial concerns. In this Seminar, we provide an overview of advances in the understanding of the epidemiology, genetics, and biology of testicular germ cell tumours. We also summarise the consensus on how to treat testicular germ cell tumours and focus on a few controversies and improvements in the understanding of late effects of treatment and quality of life for survivors.
-
Osteogenesis imperfecta is a phenotypically and molecularly heterogeneous group of inherited connective tissue disorders that share similar skeletal abnormalities causing bone fragility and deformity. Previously, the disorder was thought to be an autosomal dominant bone dysplasia caused by defects in type I collagen, but in the past 10 years discoveries of novel (mainly recessive) causative genes have lent support to a predominantly collagen-related pathophysiology and have contributed to an improved understanding of normal bone development. ⋯ Knowledge of the specific molecular basis of each form of the disorder will advance clinical diagnosis and potentially stimulate targeted therapeutic approaches. In this Seminar, together with diagnosis, management, and treatment, we describe the defects causing osteogenesis imperfecta and their mechanism and interrelations, and classify them into five groups on the basis of the metabolic pathway compromised, specifically those related to collagen synthesis, structure, and processing; post-translational modification; folding and cross-linking; mineralisation; and osteoblast differentiation.