Molecular and cellular endocrinology
-
Mol. Cell. Endocrinol. · Jan 2019
Hydrogen sulfide primes diabetic wound to close through inhibition of NETosis.
Diabetes-induced neutrophil NETosis impairs wound healing through neutrophil extracellular traps (NETs). Reactive oxygen species (ROS)-triggered activation of mitogen-activated protein kinase (MAPK) ERK1/2 and p38 is involved in NETosis. Hydrogen sulfide (H2S), an endogenous signaling molecule, accelerates diabetic wound healing (DWH), and inhibits ROS production, ERK1/2 and p38 activation, while its level is decreased in diabetes. ⋯ The treatment with H2S not only attenuated ROS production but also abolished MAPK ERK1/2 and p38 activation. Like the effects of H2S, inhibition of MAPK ERK1/2 or p38 could decrease NETs release. These findings suggests that H2S attenuates NETosis and primes diabetic wound to heal through blockage of ROS-mediated MAPK ERK1/2 and p38 activation.
-
Mol. Cell. Endocrinol. · Jan 2019
Progesterone and cAMP synergize to inhibit responsiveness of myometrial cells to pro-inflammatory/pro-labor stimuli.
Progesterone (P4) acting through the P4 receptor (PR) isoforms, PR-A and PR-B, promotes uterine quiescence for most of pregnancy, in part, by inhibiting the response of myometrial cells to pro-labor inflammatory stimuli. This anti-inflammatory effect is inhibited by phosphorylation of PR-A at serine-344 and -345 (pSer344/345-PRA). Activation of the cyclic adenosine monophosphate (cAMP) signaling pathway also promotes uterine quiescence and myometrial relaxation. ⋯ Forskolin inhibited pSer344/345-PRA generation, in part, by increasing the expression of dual specificity protein phosphatase 1 (DUSP1), a phosphatase that inactivates mitogen-activated protein kinases (MAPKs) including SAPK/JNK. P4/PR and forskolin increased DUSP1 expression. The data suggest that P4/PR promotes uterine quiescence via cross-talk and synergy with cAMP/PKA signaling in myometrial cells that involves DUSP1-mediated inhibition of SAPK/JNK activation.