Molecular and cellular endocrinology
-
Mol. Cell. Endocrinol. · Nov 2017
ReviewIdentification of miRNAs as biomarkers for acquired endocrine resistance in breast cancer.
Therapies targeting estrogen receptor α (ERα) including tamoxifen, a selective estrogen receptor modulator (SERM) and aromatase inhibitors (AI), e.g., letrozole, have proven successful in reducing the death rate for breast cancer patients whose initial tumors express ERα. However, about 40% of patients develop acquired resistance to these endocrine treatments. ⋯ Exosomal transfer of miRNAs has been implicated in metastasis and endocrine-resistance. This review focuses on miRNAs in breast tumors and in serum, including exosomes, from breast cancer patients that are associated with resistance to tamoxifen since it is best-studied.
-
Mol. Cell. Endocrinol. · Dec 2015
ReviewCircadian rhythms in glucose and lipid metabolism in nocturnal and diurnal mammals.
Most aspects of energy metabolism display clear variations during day and night. This daily rhythmicity of metabolic functions, including hormone release, is governed by a circadian system that consists of the master clock in the suprachiasmatic nuclei of the hypothalamus (SCN) and many secondary clocks in the brain and peripheral organs. The SCN control peripheral timing via the autonomic and neuroendocrine system, as well as via behavioral outputs. ⋯ Most experimental knowledge comes from studies in nocturnal laboratory rodents. Nevertheless, we will also mention some relevant findings in diurnal mammals, including humans. It will become clear that as a consequence of the tight connections between the circadian clock system and energy metabolism, circadian clock impairments (e.g., mutations or knock-out of clock genes) and circadian clock misalignments (such as during shift work and chronic jet-lag) have an adverse effect on energy metabolism, that may trigger or enhancing obese and diabetic symptoms.
-
Mol. Cell. Endocrinol. · Dec 2015
ReviewEstrogen receptor alpha-36 (ER-α36): A new player in human breast cancer.
Prevailing wisdom is that estrogen receptor (ER)-α mediated genomic estrogen signaling is responsible for estrogen-stimulated cell proliferation and development of ER-positive breast cancer. However, accumulating evidence indicates that another estrogen signaling pathway, non-genomic or rapid estrogen signaling, also plays an important role in mitogenic estrogen signaling. ⋯ In this review, we review and update the biological function of ER-α36 in ER-positive and -negative breast cancer, breast cancer stem/progenitor cells and tamoxifen resistance, potential interaction and cross-talk of ER-α36 with other ERs and growth factor receptors, and intracellular pathways of ER-α36-mediated rapid estrogen signaling. The potential function and underlying mechanism of ER-α in development of ER-positive breast cancer will also be discussed.
-
Mol. Cell. Endocrinol. · Jun 2015
ReviewThe HPA axis response to critical illness: New study results with diagnostic and therapeutic implications.
For decades, elevated plasma cortisol concentrations in critically ill patients were exclusively ascribed to a stimulated hypothalamus-pituitary-adrenal axis with increased circulating adrenocorticotropic hormone (ACTH) inferred to several-fold increase adrenal cortisol synthesis. However, 'ACTH-cortisol dissociation' has been reported during critical illness, referring to low circulating ACTH coinciding with elevated circulating cortisol. ⋯ Although the low plasma ACTH concentrations, evoked by the elevated plasma cortisol via feedback inhibition, are part of this adaptation, they may negatively affect adrenocortical structure and function in the prolonged phase of critical illness. These new insights have implications for diagnosis and treatment of adrenal insufficiency in critically ill patients.
-
Mol. Cell. Endocrinol. · Jun 2015
ReviewThe role of adrenal gland microenvironment in the HPA axis function and dysfunction during sepsis.
Sepsis and septic shock in response to bacterial or viral infections remain the major health problem worldwide. Despite decades of intensive research and improvements in medical care, severe sepsis is associated with high mortality. Rapid activation of the adrenal gland glucocorticoid and catecholamine production is a fundamental component of the stress response and is essential for survival of the host. ⋯ A coordinated interaction of numerous cell types and systems within the adrenal gland is involved in the sustained adrenal glucocorticoid production. This review article describes and discusses recent experimental findings regarding the role of adrenal gland microenvironment including the adrenal vasculature and the immune-adrenal crosstalk in the disregulated HPA axis during sepsis conditions. In summary, in addition to the reduced cortisol breakdown and related ACTH suppression, sepsis-mediated chronic activation of the immune-adrenal crosstalk and vascular dysfunction may contribute to the HPA axis dysregulation found in septic patients.