Physical therapy
-
Clinical Trial
Effect of burst-mode transcutaneous electrical nerve stimulation on peripheral vascular resistance.
Based on changes in skin temperature alone, some authors have proposed that postganglionic sympathetic vasoconstrictor fibers can be stimulated transcutaneously. Our goal was to determine the effects of low-frequency (2 bursts per second), burst-mode transcutaneous electrical nerve stimulation (TENS) on calf vascular resistance, a more direct marker of sympathetic vasoconstrictor outflow than skin temperature, in subjects with no known pathology. ⋯ These results demonstrate that the effects of TENS on circulation depend on stimulation intensity. When the intensity was sufficient to cause a moderate muscle contraction, a transient, local increase in blood flow occurred. Cooling of the dorsal and plantar skin occurred in both the stimulated and control legs, most likely because skin temperature acclimatized to ambient room temperature, rather than because of any effect of TENS on circulation. The data, therefore, call into question the idea that postganglionic sympathetic efferent fibers are stimulated when TENS is applied at clinically relevant intensities to people without symptoms of cardiovascular or neuromuscular pathology.