Physical therapy
-
Case Reports
Diaphragm Pacing as a Rehabilitative Tool for Patients With Pompe Disease Who Are Ventilator-Dependent: Case Series.
Pompe disease is an inherited disorder notable for severe, progressive ventilatory compromise. Although ventilatory failure has been attributed to myofiber dysfunction secondary to diaphragmatic glycogen accumulation, neural involvement of the phrenic motor system is also a prominent feature. Direct diaphragm pacing supplements respiratory function in other disorders of the phrenic motor system. Accordingly, it is hypothesized that augmented neuromuscular activity via diaphragm pacing would promote weaning from mechanical ventilation in patients with Pompe disease who are unresponsive to conventional, muscle-directed treatments. ⋯ The findings are consistent with the view that diaphragm pacing has potential rehabilitative value to reduce reliance on mechanical ventilation in people with Pompe disease, but further study is needed. Diaphragm pacing represents a paradigm shift in the management of respiratory insufficiency for Pompe disease that warrants further controlled examination.
-
The Human Genome Project and the International HapMap Project have yielded new understanding of the influence of the human genome on health and disease, advancing health care in significant ways. In personalized medicine, genetic factors are used to identify disease risk and tailor preventive and therapeutic regimens. Insight into the genetic bases of cellular processes is revealing the causes of disease and effects of exercise. ⋯ Clinicians with knowledge of the influence of genetic variants on health and disease will be uniquely positioned to institute individualized lifestyle interventions, thereby fulfilling roles in prevention and wellness. This article describes how discoveries in genomics are rapidly evolving the understanding of health and disease by highlighting 2 conditions: cardiovascular disease and osteoarthritis. Genetic factors related to exercise effects also are considered.
-
Comparative Study
Comparison of the Fullerton Advanced Balance Scale, Mini-BESTest, and Berg Balance Scale to Predict Falls in Parkinson Disease.
The correct identification of patients with Parkinson disease (PD) at risk for falling is important to initiate appropriate treatment early. ⋯ The FAB scale, Mini-BESTest, and BBS provide moderate capacity to predict "fallers" (people with one or more falls) from "nonfallers." Only some items of the 3 scales contribute to the detection of future falls. Clinicians should particularly focus on the item "tandem stance" along with the items "one-leg stance," "rise to toes," "compensatory stepping backward," "turning 360°," and "placing foot on stool" when analyzing postural control deficits related to fall risk. Future research should analyze whether balance training including the aforementioned items is effective in reducing fall risk.
-
Evidence suggests that there are several fall predictors in the elderly population, including previous fall history and balance impairment. To date, however, the role of psychological factors has not yet been thoroughly vetted in conjunction with physical factors as predictors of future falls. ⋯ Balance confidence was the best predictor of falling, followed by fear of falling avoidance behavior, and the Timed "Up & Go" Test. Fall history, presence of pathology, and physical tests did not predict falling. These findings suggest that participants may have had a better sense of their fall risk than with a test that provides a snapshot of their balance.
-
An effective compensatory stepping response is the first line of defense for preventing a fall during sudden large external perturbations. The biomechanical factors that contribute to heightened fall risk in survivors of stroke, however, are not clearly understood. It is known that impending sensorimotor and balance deficits poststroke predispose these individuals to a risk of fall during sudden external perturbations. ⋯ These findings suggest the inability of the survivors of stroke to regain postural stability with one or more compensatory steps, unlike their healthy counterparts. Such a response may expose them to a greater fall risk resulting from inefficient compensatory stepping and reduced vertical limb support. Therapeutic interventions for fall prevention, therefore, should focus on improving both reactive stepping and limb support.