Medical hypotheses
-
I believe that people will not feel comfortable and positive about the contemporary world until we can endorse and believe an evolutionary cosmology which is appropriate to modern conditions. A cosmology is a mythical account of the universe as it presents itself to the human mind; it needs to be poetic, symbolic, inspiring of a sense of awe and mystery. Furthermore, a complete cosmology should include the three levels of macro-, meso- and micro-cosm, in order to understand the nature of the universe, human society, and the individual's relation to them. ⋯ The same dynamic, neophiliac and open-ended process of 'creative destruction' can be seen at work in science, economics, and modern spirituality. But a modern cosmology will only be experienced as both deep and spontaneous when it takes the form of a mythic account that is first encountered and assimilated during childhood. Since myths arise as a consequence of human creativity; there is a vital future mythogenic role for artists in the realm of ideas, images and stories: people such as mystics, poets and philosophers--including, I hope and expect, creatively inspired scientists.
-
The four science Nobel prizes (physics, chemistry, medicine/physiology and economics) have performed extremely well as a method of recognizing the highest level of achievement. The prizes exist primarily to honour individuals but also have a very important function in science generally. In particular, the institutions and nations which have educated, nurtured or supported many Nobel laureates can be identified as elite in world science. ⋯ I therefore suggest that the maximum of three laureates per year should always be awarded in the categories of physics, chemistry and economics, even when these prizes are for diverse and un-related achievements; that the number of laureates in the 'biology' category of physiology or medicine should be increased to six or preferably nine per year; and that two new Prize categories should be introduced to recognize achievements in mathematics and computing science. Together, these measures could increase the science laureates from a maximum of 12 to a minimum of 24, and increase the range of scientific coverage. In future, the Nobel committee should also officially allocate proportionate credit to institutions for each laureate, and a historical task force could also award institutional credit for past prizes.
-
Editorial Historical Article
Which are the best nations and institutions for revolutionary science 1987-2006? Analysis using a combined metric of Nobel prizes, Fields medals, Lasker awards and Turing awards (NFLT metric).
I have previously suggested that Nobel prizes can be used as a scientometric measurement of 'revolutionary science'; and that for this purpose it would be better if more Nobel prizes were awarded, especially in three new subjects of mathematics, medicine and computing science which have become major sciences over recent decades. In the following analysis of the last 20 years from 1987 to 2006, I use three prestigious prizes in mathematics (Fields medal), medicine (Lasker award for Clinical Medical Research) and computing science (A. M. ⋯ Second is France, with three institutions having three or more winners; the UK and Norway have one each. The NFLT metric confirms previous observations that many public universities in the Western USA have now become a major focus of revolutionary science; and that Harvard has declined from its previous status as the top world centre of revolutionary science to about seventh-place. This analysis confirms the potential value of increasing the number of Nobel prizes as a means of identifying and monitoring centres of excellence in revolutionary science.
-
Editorial Historical Article
Measuring revolutionary biomedical science 1992-2006 using Nobel prizes, Lasker (clinical medicine) awards and Gairdner awards (NLG metric).
The Nobel prize for medicine or physiology, the Lasker award for clinical medicine, and the Gairdner international award are given to individuals for their role in developing theories, technologies and discoveries which have changed the direction of biomedical science. These distinctions have been used to develop an NLG metric to measure research performance and trends in 'revolutionary' biomedical science with the aim of identifying the premier revolutionary science research institutions and nations from 1992-2006. I have previously argued that the number of Nobel laureates in the biomedical field should be expanded to about nine per year and the NLG metric attempts to predict the possible results of such an expansion. ⋯ The University of Oxford, UK, was the only institution outside of the USA which featured as a significant centre of revolutionary biomedical science. Long-term success at the highest level of revolutionary biomedical science (and probably other sciences) probably requires a sufficiently large number of individually-successful large institutions in open competition with one another--as in the USA. If this model cannot be replicated within smaller nations, then it implies that such arrangements need to be encouraged and facilitated in multi-national units.
-
The Thomson Scientific Impact Factor (IF) for Medical Hypotheses has risen to 1.299 for 2006. This means that the IF has more than doubled since 2004, when it stood at 0.607. Using Elsevier's Scopus database; in 2004 there were 437 citations to Medical Hypotheses papers published in the previous two years--by 2006 this had trebled to 1216 citations. ⋯ Since Medical Hypotheses is performing adequately by such criteria, this provides a powerful answer to those who fetishize peer review and regard any other system of evaluation as suspect. Journal review procedures are merely a means to the end, and the end is a journal that serves a useful function in the dynamic process of science. Medical Hypotheses can now claim to perform such a role.