Journal of neurosurgery
-
Journal of neurosurgery · Mar 2022
Asleep deep brain stimulation with intraoperative magnetic resonance guidance: a single-institution experience.
Deep brain stimulation (DBS) is traditionally performed on an awake patient with intraoperative recordings and test stimulation. DBS performed under general anesthesia with intraoperative MRI (iMRI) has demonstrated high target accuracy, reduced operative time, direct confirmation of target placement, and the ability to place electrodes without cessation of medications. The authors describe their initial experience with using iMRI to perform asleep DBS and discuss the procedural and radiological outcomes of this procedure. ⋯ A total of 205 leads were placed in 103 patients by a single surgeon under iMRI guidance with few operative complications. Operative time trended downward with increasing institutional experience, and technical accuracy of radiographic lead placement was consistently high. Asleep DBS implantation with iMRI appears to be a safe and effective alternative to standard awake procedures.
-
Journal of neurosurgery · Mar 2022
Management of patients with medically intractable epilepsy and anterior temporal lobe encephaloceles.
Temporal lobe encephaloceles (TLENs) are a significant cause of medically refractory epilepsy, but there is little consensus regarding their workup and treatment. This study characterizes these lesions and their role in seizures and aims to standardize preoperative evaluation and surgical management. ⋯ TLENs are epileptogenic lesions that should be screened for in patients with medically refractory epilepsy who have signs of IIH and no other lesions on MRI. Restricted resection is safe and effective in patients with scalp EEG findings concordant with TLEN.
-
Journal of neurosurgery · Mar 2022
A subset of arachnoid granulations in humans drain to the venous circulation via intradural lymphatic vascular channels.
The discovery of dural lymphatics has spurred interest in the mechanisms of drainage of interstitial fluid from the CNS, the anatomical components involved in clearance of macromolecules from the brain, mechanisms of entry and exit of immune components, and how these pathways may be involved in neurodegenerative diseases and cancer metastasis. In this study the authors describe connections between a subset of arachnoid granulations (AGs) and the venous circulation via intradural vascular channels (IVCs), which stain positively with established lymphatic markers. The authors postulate that the AGs may serve as a component of the human brain's lymphatic system. ⋯ AGs consist of two subtypes with differing modes of drainage into the SSS. A subset of AGs located intradurally use tubular channels, which stain positively with vascular and lymphatic markers to connect to the venous lacunae and ultimately to the SSS. The present study suggests that AGs may function as a component of brain lymphatics. This finding has important clinical implications for cancer metastasis to and from the CNS and may shed light on mechanisms of altered clearance of macromolecules in the setting of neurodegenerative diseases.