RöFo : Fortschritte auf dem Gebiete der Röntgenstrahlen und der Nuklearmedizin
-
This review presents the basic principles of functional imaging of the central nervous system utilizing magnetic resonance imaging. The focus is set on visualization of different functional aspects of the brain and related pathologies. Additionally, clinical cases are presented to illustrate the applications of functional imaging techniques in the clinical setting. ⋯ Based on different pharmacokinetic models of contrast enhancement diagnostic applications for neurology and radio-oncology are discussed. The functional non-contrast enhanced imaging techniques are based on "blood oxygenation level dependent (BOLD)-fMRI and arterial spin labeling (ASL) technique. They have gained clinical impact particularly in the fields of psychiatry and neurosurgery.
-
MRI-imaging using a field strength above 2 Tesla -- recently termed "highfield MRI" -- has come into clinical use in the last three years. For technical reasons, the initial application of highfield MRI concentrated on examinations of the brain. By improving the technology and solving specific problems, it has now become possible to perform total body scans. ⋯ BOLD contrast fMRI, perfusion analysis and spectroscopy all seem to improve. For total body scanning, it is already possible to examine certain areas in "1.5 Tesla quality", in some cases shortening scanning time considerably. This survey summarises the present state of knowledge, realising that the presentation might not be all-comprising since progress in this field is very dynamic.
-
Current imaging methods of the lung concentrate on morphology as well as on the depiction of the pulmonary parenchyma. The need of an advanced and more subtle imaging technology compared to conventional radiography is met by computed topography as the method of choice. Nevertheless, computed tomography yields very limited functional information. ⋯ Oxygen sensitive imaging displays intrapulmonary oxygen partial pressure and its distribution. Currently, the method is limited by comparably high costs and limited availability. As there have been recent developments which might bring this modality closer to clinical use, this review article will comprise the methodology as well as the current state of the art and standard of knowledge of magnetic resonance imaging of the lung using hyperpolarised (3)Helium.