Pain
-
Review
Pain relief from intra-articular morphine after knee surgery: a qualitative systematic review.
Reduction of postoperative pain by injecting opioid into the knee joint is believed to support the hypothesis of peripheral opioid receptor activation in inflammation. The study design consisted of a systematic review of randomised controlled trials (RCTs). Main outcomes were pain intensity and the use of supplementary analgesics. ⋯ We conclude that intra-articular morphine may have some effect in reducing postoperative pain intensity and consumption of analgesics. These studies had significant problems in design, data collection, statistical analysis and reporting. Trials of better methodological quality are needed for a conclusive answer that intra-articular morphine is analgesic, and that any analgesia produced is clinically useful.
-
The aims of this study were to examine the effect of old age on the pharmacokinetics of morphine and morphine-6 beta-glucuronide (M6G) and their relationships to antinociceptive activity. Morphine (21.0 mumol/kg) or M6G (21.7 mumol/kg) were administered s.c. to young adult and aged male Hooded-Wistar rats. Antinociceptive effect was measured by the tail-flick method at various times up to 2.5 h or 6.5 h after morphine or M6G administration, respectively, and concentrations of morphine, morphine-3 beta-glucuronide (M3G) and M6G in plasma and brain were determined by HPLC. ⋯ The results demonstrate no change in morphine antinociception and pharmacokinetics with age, and suggest that blood-brain barrier permeability and reception sensitivity to morphine are not altered in aged rats. Accumulation of M3G in plasma of aged rats is probably due to diminished renal clearance of M3G in addition to a reduction in the biliary excretion of M3G. The heightened sensitivity of the aged rats to M6G is probably due to the observed altered kinetics of M6G rather than a pharmacodynamic change.
-
Intradermal capsaicin injection in humans results in primary hyperalgesia to heat and mechanical stimuli applied near the injection site, as well as secondary mechanical hyperalgesia (increased pain from noxious stimuli) and mechanical allodynia (pain from innocuous stimuli) in an area surrounding the site of primary hyperalgesia. This study in rats tested the hypothesis that the secondary hyperalgesia and allodynia observed following intradermal injection of capsaicin was dependent upon activation of voltage sensitive calcium channels in the spinal cord. Responses to application of von Frey filaments of 10 mN and 90 mN bending forces were tested in all rats before and after injection of capsaicin into the plantar surface of a hindpaw. ⋯ However, all three blockers dose dependently prevented the development of secondary mechanical hyperalgesia and allodynia. The threshold to mechanical stimulation with von Frey filaments was also increased significantly in animals treated with these calcium channel blockers when compared to articial cerebrospinal fluid control animals. These data suggest that calcium channels are important for the development of mechanical hyperalgesia and allodynia that occurs following capsaicin injection.
-
Randomized Controlled Trial Clinical Trial
Blockade of nocebo hyperalgesia by the cholecystokinin antagonist proglumide.
In patients who reported mild postoperative pain, we evoked a nocebo response, a phenomenon equal but opposite to placebo. Patients who gave informed consent to increase their pain for 30 min received a substance known to be non-hyperalgesic (saline solution) and were told that it produced a pain increase. A nocebo effect was observed when saline was administered. ⋯ The blockade of the nocebo hyperalgesic response was not reversed by 10 mg of naloxone. These results suggest that cholecystokinin mediates pain increase in the nocebo response and that proglumide blocks nocebo through mechanisms not involving opioids. Since the nocebo procedure represents an anxiogenic stimulus and previous studies showed a role for cholecystokinin in anxiety, we suggest that nocebo hyperalgesia may be due to a cholecystokinin-dependent increase of anxiety.
-
Randomized Controlled Trial Clinical Trial
Characterisation of capsaicin-induced mechanical hyperalgesia as a marker for altered nociceptive processing in patients with rheumatoid arthritis.
Rheumatoid arthritis (RA) is characterised by pain and tenderness not only over inflamed or damaged joints, but also over apparently normal tissues. Experimental models suggest that these features results from changes of sensitivity within both peripheral and central neurones, but direct evidence from human disease is lacking. At present, most clinical studies have evaluated overall pain experience rather than activity within components of the nociceptive pathway. ⋯ Peripheral sensory activity over the forearms of rheumatoid patients has previously been shown to be normal and the results suggest the presence of enhanced central mechanisms in this disorder. The correlation between capsaicin-induced hyperalgesia and joint tenderness in the RA patients implies that joint symptoms arise partially as a result of central, and not exclusively peripheral, factors. The study supports the use of capsaicin-based techniques to explore nociceptive mechanisms in clinical disorders characterised by chronic pain.