Pain
-
Comparative Study
DPDPE-UK14,304 synergy is retained in mu opioid receptor knockout mice.
When agonists to alpha(2)adrenergic receptor (AR) and delta opioid receptor (DOR) are co-administered, they act synergistically to inhibit nociceptive elicited behavior. Some previous studies of synergism have used the DOR-selective agonist [D-Pen(2),D-Pen(5)]-enkehphalin (DPDPE), however, DPDPE has been shown to be less potent in mu opioid receptor-knockout (MOR-KO) mice. It is possible, therefore, that MOR contributes to the synergism of DPDPE with the alpha(2)AR agonists. ⋯ Interestingly, isobolographic analysis showed that, despite substantial loss of DPDPE potency in MOR-KO, DPDPE-UK14,304 synergism is fully retained. Collectively, these experiments demonstrate that although MOR participates in DELT II- and DPDPE-mediated spinal antinociception, DOR independently participates in synergistic antinociception with alpha(2)AR. Resolution of the roles of the opioid receptor subtypes in opioid agonist-induced effects may require comparison of the effects of multiple selective agonists in knockout animals.
-
The Transtheoretical model of stages of behaviour change has stimulated research interest in relation to chronic pain, yet studies using the Pain Stages of Change Questionnaire (PSOCQ; Pain (72) 1997 227) have reported inconsistent findings and have generally utilized pain-clinic samples. The aims of the current study were to assess the general validity of the PSOCQ with a non-pain-clinic sample of patients with chronic pain, and to examine the utility of the stages of change model as applied to this population. ⋯ The findings demonstrated a number of limitations of the PSOCQ in terms of its ability to classify individuals into specific stages of change. The stages of change model requires adaptation in order to be useful for treatment planning in a non-pain-clinic sample of patients with chronic pain.
-
GABA and glycine are inhibitory neurotransmitters used by many neurons in the spinal dorsal horn, and intrathecal administration of GABA(A) and glycine receptor antagonists produces behavioural signs of allodynia, suggesting that these transmitters have an important role in spinal pain mechanisms. Several studies have described a substantial loss of GABA-immunoreactive neurons from the dorsal horn in nerve injury models, and it has been suggested that this may be associated with a loss of inhibition, which contributes to the behavioural signs of neuropathic pain. We have carried out a quantitative stereological analysis of the proportions of neurons in laminae I, II and III of the rat dorsal horn that show GABA- and/or glycine-immunoreactivity 2 weeks after nerve ligation in the chronic constriction injury (CCI) model, as well as in sham-operated and nai;ve animals. ⋯ However, we did not observe any change in the proportion of neurons in laminae I-III of the ipsilateral dorsal horn that showed GABA- or glycine-immunoreactivity compared to the contralateral side in these animals, and these proportions did not differ significantly from those seen in sham-operated or nai;ve animals. In addition, we did not see any evidence for alterations of GABA- or glycine-immunostaining in the neuropil of laminae I-III in the animals that had undergone CCI. Our results suggest that significant loss of GABAergic or glycinergic neurons is not necessary for the development of thermal hyperalgesia in the CCI model of neuropathic pain.
-
In this study, a new behavioral assessment of craniofacial muscle pain in the lightly anesthetized rat is described. Intramuscular injections with algesic agents in lightly anesthetized rats evoked a characteristic ipsilateral hindpaw shaking behavior for several minutes similar to previously described orofacial pain-induced grooming behavior in awake rats (Neurosci Lett 103 (1989) 349, Pain 62 (1995) 295). Eighty-two male Sprague-Dawley rats were used in a series of experiments to study whether this behavior could serve as a valid measure of craniofacial muscle pain. ⋯ Finally, we showed that systemic administration of morphine sulfate (3 and 0.3 mg/kg, i.p.) dose dependently attenuated mustard oil induced hindpaw-shaking behavior. Lidocaine injected locally 5 min prior to mustard oil injection also significantly decreased the hindpaw shaking behavior. Based on these results we concluded that ipsilateral hindpaw shaking in lightly anesthetized rats is a stereotypical behavior evoked by noxious muscle stimulation and can be used as a reliable behavioral measure to assess craniofacial muscle pain.
-
The discovery that the endogenous morphine-like peptides named enkephalins are inactivated by two metallopeptidases, neutral endopeptidase and aminopeptidase N, which can be blocked by dual inhibitors, represents a promising way to develop 'physiological' analgesics devoid of the side effects of morphine. A new series of dual aminophosphinic inhibitors of the two enkephalin-catabolizing enzymes has been recently designed. In this study, one of these inhibitors, RB3007, was tested in various assays commonly used to select analgesics (mouse hot-plate test, rat tail-flick test, writhing and formalin tests in mice, and paw pressure test in rats), and the extracellular levels of the endogenous enkephalins in the ventrolateral periaqueductal grey have been measured by microdialysis after systemic administration of RB3007. ⋯ This increase parallels the antinociceptive responses observed. In addition, strong facilitatory effects of subanalgesic doses of the CCK(2) receptor antagonist, PD-134,308 or the synthetic opioid agonist, methadone on RB3007-induced antinociceptive responses were observed. These findings may constitute promising data for future development of a new class of analgesics that could be of major interest in a number of severe and persistent pain syndromes.