Pain
-
Comparative Study
Sensitization to bradykinin B1 and B2 receptor activation in UV-B irradiated human skin.
Bradykinin B1 and B2 receptors contribute to nociceptor sensitization under inflammatory conditions. Here, we examined the vascular inflammatory responses and nociceptive effects resulting from activation of B1 and B2 receptors in healthy and UV-B irradiated skin in human volunteers. The B1 receptor agonist des-Arg(10)-Kallidin (10(-6)-10(-3)M) and the B2 receptor agonist bradykinin (10(-9)-10(-4)M) were administered by dermal microdialysis to the ventral thigh. ⋯ In normal skin, both B1 and B2 receptor activation dose-dependently evoked pain, vasodilatation and protein extravasation. In UV-B irradiated skin, pain sensation and axon reflex vasodilatation were enhanced by both B1 and B2 agonists, whereas local vasodilatation was increased only following B1 receptor activation. The UV-B irradiation did not enhance B1 and B2 receptor-induced protein extravasation indicating a differential sensitization of the neuronal, but not the vascular response.
-
Comparative Study
Block of NMDA and non-NMDA receptor activation results in reduced background and evoked activity of central amygdala neurons in a model of arthritic pain.
The latero-capsular division of the central nucleus of the amygdala (CeA) is now defined as the 'nociceptive amygdala' because of its high content of neurons activated exclusively or preferentially by noxious stimuli. Multireceptive (MR) neurons that respond to innocuous and, more strongly, to noxious stimuli become sensitized in arthritis pain. This form of nociceptive plasticity involves presynaptic group I metabotropic glutamate receptors, which increase glutamate release. ⋯ All neurons examined received excitatory input from the knee(s) and were MR neurons. A selective NMDA receptor antagonist (AP5) inhibited responses to noxious stimuli more potently in the arthritic pain state (n = 6) than under control conditions before arthritis (n = 8) AP5 also inhibited the enhanced background activity and increased responses to normally innocuous stimuli in arthritis, but had no significant effects on these parameters under control conditions. A selective non-NMDA receptor antagonist (NBQX) inhibited background activity and evoked responses under normal control conditions (n = 6) and in arthritis (n = 8) These data suggest that activation of both NMDA and non-NMDA receptors contributes to pain-related sensitization of amygdala neurons.
-
Comparative Study
Prostaglandin E2 in the midbrain periaqueductal gray produces hyperalgesia and activates pain-modulating circuitry in the rostral ventromedial medulla.
Recent years have seen significant advances in our understanding of the peripheral and spinal mechanisms through which prostaglandins contribute to nociceptive sensitization. By contrast, the possibility of a supraspinal contribution of these compounds to facilitated pain states has received relatively little attention. One possible mechanism through which prostaglandins could act supraspinally to facilitate nociception would be by recruitment of descending facilitation from brainstem pain-modulating systems. ⋯ Microinjection of PGE(2) (50 fg in 200 nl) into the PAG produced a significant decrease in paw withdrawal latency. The PGE(2) microinjection activated on-cells, RVM neurons thought to facilitate nociception, and suppressed the firing of off-cells, RVM neurons believed to have an inhibitory effect on nociception. These data demonstrate a prostaglandin-sensitive descending facilitation from the PAG, and suggest that this is mediated by on- and off-cells in the RVM.
-
Comparative Study
Amplitudes of laser evoked potential recorded from primary somatosensory, parasylvian and medial frontal cortex are graded with stimulus intensity.
Intensity encoding of painful stimuli in many brain regions has been suggested by imaging studies which cannot measure electrical activity of the brain directly. We have now examined the effect of laser stimulus intensity (three energy levels) on laser evoked potentials (LEPs) recorded directly from the human primary somatosensory (SI), parasylvian, and medial frontal cortical surfaces through subdural electrodes implanted for surgical treatment of medically intractable epilepsy. LEP N2* (early exogenous/stimulus-related potential) and LEP P2** (later endogenous potential) amplitudes were significantly related to the laser energy levels in all regions, although differences between regions were not significant. ⋯ The lack of correlation of parasylvian cortical N2* with laser energy and pain intensity may be due to the unique anatomy of this region, or the small sample, rather than the lack of activation by the laser. Differences in thresholds of the energy correlation with amplitudes were not significant between regions. These results suggest that both exogenous in endogenous potentials evoked by painful stimuli, and recorded over SI, parasylvian, and medial frontal cortex of awake humans, encode the intensity of painful stimuli and correlate with the pain evoked by painful stimuli.
-
Comparative Study Clinical Trial Controlled Clinical Trial
The effects of early or late neurolytic sympathetic plexus block on the management of abdominal or pelvic cancer pain.
Neurolytic sympathetic plexus block (NSPB) has been proposed to prevent the development of pain and improve the quality of life of patients with cancer, thus questioning the WHO protocol that proposes the use of invasive methods only as a final resort. This study evaluates the pain relief, opioid consumption and quality of life provided by the use of NSPB in two different phases of cancer pain and compares them with that provided by pharmacological therapy only. Sixty patients with abdominal or pelvic cancer pain were divided into three groups and observed for 8 weeks. ⋯ Opioid-related adverse effects were significantly greater in group III (P < 0.05). The occasional neurolysis-related complications were transitory. The results suggest NSPB for the management of cancer pain should be considered earlier in the disease.