Pain
-
The sensitivity of tendon and tendon-bone junction is not fully described although these tissues have high clinical impacts. This study assessed (1) pain intensity and referred pain caused by hypertonic saline injection to the proximal tendon-bone junction (PTBJ), tendon and muscle belly sites of tibialis anterior muscle and (2) pressure pain sensitivity, pre, during and post hypertonic saline injections. Eighteen subjects (14 males and 4 females) participated. ⋯ Hypertonic saline pain at the tendon and PTBJ caused significantly higher (P < 0.001) final VAS scores compared to the muscle belly site. The results indicate the PTBJ and tendon sites are more sensitive and susceptible to sensitisation by hypertonic saline than muscle belly. Furthermore, there may be site specific central changes reflected by the differences in the results regarding sensitivity and summation over time.
-
Randomized Controlled Trial
The role of developmental factors in predicting young children's use of a self-report scale for pain.
Accurate pain assessment is the foundation for effective pain management in children. At present, there is no clear consensus regarding the age at which young children are able to appropriately use self-report scales for pain. This study examined young children's ability to use the Faces Pain Scale-Revised; (FPS-R; [Hicks CL, von Baeyer CL, Spafford PA, van Korlaar I, Goodenough B. ⋯ However, over half of the 6-year-olds demonstrated difficulties using the FPS-R in response to the vignettes. Child age was the only significant predictor of children's ability to use the scale in response to the vignettes. Thus, a substantial number of young children experienced difficulties using the FPS-R when rating pain in hypothetical vignettes, although the ability to use the scale did improve with age.
-
Transcutaneous electrical nerve stimulation (TENS) reduces pain through central mechanisms involving spinal cord and brainstem sites. Since TENS acts through central mechanisms, we hypothesized that TENS will reduce chronic bilateral hyperalgesia produced by unilateral inflammation when applied either ipsilateral or contralateral to the site of muscle inflammation. Sprague-Dawley rats were injected with carrageenan in the left gastrocnemius muscle belly. ⋯ Either low or high frequency TENS applied to the gastrocnemius muscle ipsilateral to the site of inflammation significantly reversed mechanical hyperalgesia, both ipsilateral and contralateral to the site of inflammation. Low or high frequency TENS applied to the gastrocnemius muscle contralateral to the site of inflammation also significantly reduced mechanical hyperalgesia, both ipsilateral and contralateral to the site of inflammation. Since ipsilateral or contralateral TENS treatments were effective in reducing chronic bilateral hyperalgesia in this animal model, we suggest that TENS act through modulating descending influences from supraspinal sites such as rostral ventromedial medulla (RVM).
-
Randomized Controlled Trial
Chronobiological characteristics of painful diabetic neuropathy and postherpetic neuralgia: diurnal pain variation and effects of analgesic therapy.
Clinical impressions suggest that neuropathic pain is often worse at night and significantly impairs sleep. However, the temporal pattern of neuropathic pain during waking hours has not been clearly characterized. Using clinical trial data, we have evaluated the diurnal variation of pain intensity before and during analgesic treatment in patients with diabetic neuropathy (DN) and postherpetic neuralgia (PHN). ⋯ Neuropathic pain intensity progressively increases throughout the day and this temporal profile appears to be unaffected by treatment with gabapentin and/or morphine. Advancing our understanding of the chronobiology of neuropathic pain may shed new light on various neurohormonal and neurophysiologic influences and lead to the identification of novel therapeutic targets. Furthermore, recognizing diurnal pain patterns may guide treatment strategies such as the targeted timing of analgesic therapies.
-
Controlled Clinical Trial
Increased taste intensity perception exhibited by patients with chronic back pain.
There is overlap between brain regions involved in taste and pain perception, and cortical injuries may lead to increases as well as decreases in sensitivity to taste. Recently it was shown that chronic back pain (CBP) is associated with a specific pattern of brain atrophy. Since CBP is characterized by increased sensitivity to pain, we reasoned that the sense of taste might also be enhanced in CBP. ⋯ There was no difference between CBP and control subjects for visual grayness rating. On the other hand, CBP patients in comparison to control subjects rated gustatory stimuli as significantly more intense but no more or less pleasant and showed a trend towards a lower detection threshold (i.e. increased sensitivity). The selectivity of the taste disturbance suggests interaction between pain and taste at specific brain sites and provides further evidence that CBP involves specific brain abnormalities.