Pain
-
Randomized Controlled Trial
Partial reinforcement, extinction, and placebo analgesia.
Numerous studies indicate that placebo analgesia can be established via conditioning procedures. However, these studies have exclusively involved conditioning under continuous reinforcement. Thus, it is currently unknown whether placebo analgesia can be established under partial reinforcement and how durable any such effect would be. ⋯ However, although the placebo analgesia established under CRF extinguished during test phase, the placebo analgesia established under PRF did not. These findings indicate that PRF can induce placebo analgesia and that these effects are more resistant to extinction than those established via CRF. PRF may therefore reflect a novel way of enhancing clinical outcomes via the placebo effect.
-
Multicenter Study
Genome-wide analysis of single nucleotide polymorphisms and copy number variants in fibromyalgia suggest a role for the central nervous system.
Fibromyalgia (FM) is a highly disabling syndrome defined by a low pain threshold and a permanent state of pain. The mechanisms explaining this complex disorder remain unclear, and its genetic factors have not yet been identified. With the aim of elucidating FM genetic susceptibility factors, we selected 313 FM cases having low comorbidities, and we genotyped them on the Illumina 1 million duo array. ⋯ They were followed up, and an intronic deletion in NRXN3 was demonstrated to be associated to female cases of FM with low levels of comorbidities (P=.021, odds ratio [95% confidence interval]=1.46 [1.05-2.04]). Both GWAS and aCGH results point to a role for the central nervous system in FM genetic susceptibility. If the proposed FM candidate genes were further validated in replication studies, this would highlight a neurocognitive involvement in agreement with latest reports.
-
Despite recent evidence implicating the nucleus accumbens (NAc) as causally involved in the transition to chronic pain in humans, underlying mechanisms of this involvement remain entirely unknown. Here we elucidate mechanisms of NAc reorganizational properties (longitudinally and cross-sectionally), in an animal model of neuropathic pain (spared nerve injury [SNI]). ⋯ Moreover, interruption of NAc activity (via lidocaine infusion) reversibly alleviated neuropathic pain in SNI animals. Together, these results demonstrate macroscopic (fMRI) and molecular reorganization of NAc and indicate that NAc neuronal activity is necessary for full expression of neuropathic pain-like behavior.
-
There is emerging evidence that hyperpolarization-activated cation (HCN) channels are involved in the development of pathological pain, including allodynia and hyperalgesia. Mice lacking the HCN isoform 2 display reduced heat but unchanged mechanical pain behavior, as recently shown in preclinical models of acute inflammatory pain. However, the impact of HCN2 to chronic pain conditions is less clear and has not been examined so far. ⋯ We show that chronic inflammation results in an increased expression of HCN2 and causes sensitization in peripheral and spinal terminals of the pain transduction pathway. The contribution of HCN2 to peripheral sensitization mechanisms was further supported by single-fiber recordings from isolated skin-nerve preparations and by conduction velocity measurements of saphenous nerve preparations. Global HCN2 mutants revealed that heat hypersensitivity-unaffected in peripheral HCN2 mutants-was diminished by the additional disruption of central HCN2 channels, suggesting that thermal hyperalgesia under chronic inflammatory conditions is mediated by HCN2 channels beyond primary sensory afferents.