Pain
-
In the peripheral nervous system, spontaneous activity in sensory neurons is considered to be one of the 2 main drivers of chronic pain states, alongside neuronal sensitization. Despite this, the precise nature and timing of this spontaneous activity in neuropathic pain is not well-established. Here, we have performed a systematic search and data extraction of existing electrophysiological literature to shed light on which fibre types have been shown to maintain spontaneous activity and over what time frame. ⋯ However, because of the highly specialised nature of the electrophysiological methods used to measure spontaneous activity, there is also a high degree of variability and uncertainty around these results. Specifically, there are very few directly controlled experiments, with less directly comparable data between human and animals. Given that spontaneous peripheral neuron activity is considered to be a key mechanistic feature of chronic pain conditions, it may be beneficial to conduct further experiments in this space.
-
Temporomandibular disorders (TMDs), collectively representing one of the most common chronic pain conditions, have a substantial genetic component, but genetic variation alone has not fully explained the heritability of TMD risk. Reasoning that the unexplained heritability may be because of DNA methylation, an epigenetic phenomenon, we measured genome-wide DNA methylation using the Illumina MethylationEPIC platform with blood samples from participants in the Orofacial Pain: Prospective Evaluation and Risk Assessment (OPPERA) study. Associations with chronic TMD used methylation data from 496 chronic painful TMD cases and 452 TMD-free controls. ⋯ Functional characterization of the identified regions found relationships between methylation at these loci and nearby genetic variation contributing to chronic painful TMD and with gene expression of proximal genes. These findings reveal epigenetic contributions to chronic painful TMD through methylation of the genes FMOD , PM20D1 , ZNF718 , ZFP57 , and RNF39 , following the development of acute painful TMD. Epigenetic regulation of these genes likely contributes to the trajectory of transcriptional events in affected tissues leading to resolution or chronicity of pain.
-
Meta Analysis
The association between parent mental health and pediatric chronic pain: a systematic review and meta-analysis.
Mental health problems are common among parents of children with chronic pain and associated with worse outcomes for the child with chronic pain. However, the effect sizes of these associations between parent mental health and pediatric chronic pain vary widely across studies. The aim of this systematic review and meta-analysis was to generate pooled estimates of the (1) prevalence of mental health problems among parents of children with chronic pain and (2) associations between parent mental health and the (2a) presence of child chronic pain and (2b) functioning of children with chronic pain. ⋯ Poorer parent mental health was significantly associated with the presence of chronic pain (anxiety: OR = 1.91 [1.51-2.41]; depression: OR = 1.90 [1.51-2.38]; general distress: OR = 1.74 [1.47-2.05]) and worse related functioning (ie, pain intensity, physical functioning, anxiety and depression symptoms; r s = 0.10-0.25, all P s < 0.05) in children. Moderator analyses were generally nonsignificant or could not be conducted because of insufficient data. Findings support the importance of addressing parent mental health in the prevention and treatment of pediatric chronic pain.
-
Neuropathic pain after peripheral nerve injury is a multidimensional experience that includes sensory, affective, and cognitive components that interact with one another. Hypoexcitation of the medial prefrontal cortex (mPFC) was observed in mice with peripheral nerve injury, but the changes in neural inputs onto the mPFC have not been completely explored. ⋯ Specifically, activating the neural circuit from dCA1 to mPFC alleviated neuropathic pain behaviors and improved novel object recognition ability in SNI mice, whereas deactivating this pathway in naïve animals recapitulated tactile allodynia and memory deficits. These results indicated that hypoactivity in dCA1 pyramidal cells after SNI in turn deactivated layer 5 pyramidal neurons in PrL and ultimately caused pain hypersensitivity and memory deficits.
-
Recent literature suggests that the withdrawal of remifentanil (RF) infusion can be associated with hyperalgesia in clinical and nonclinical settings. We performed a systematic review and a meta-analysis of randomized controlled trials with cross-over design, to assess the effect of discontinuing RF infusion on pain intensity and areas of hyperalgesia and allodynia in healthy volunteers. Nine studies were included. ⋯ The area of hyperalgesia was larger after RF withdrawal (SMD: 0.55; 95% CI: 0.27-0.84; P = 0.001; I 2 = 0%). The area of allodynia did not vary between treatments. These findings suggest that the withdrawal of RF induces a mild but nonclinically relevant degree of hyperalgesia in HVs, likely linked to a reduced pain threshold.