Neuroscience letters
-
Neuroscience letters · Oct 2013
Mannitol enhances therapeutic effects of intra-arterial transplantation of mesenchymal stem cells into the brain after traumatic brain injury.
Traumatic brain injury (TBI) sustained in a traffic accident or a fall is a major cause of death that affects a broad range of ages. The aim of this study was to investigate the therapeutic effects of intra-arterial transplantation of mesenchymal stem cells (MSCs) combined with hypertonic glycerol (25%) or mannitol (25%) in a TBI model of rats. TBI models were produced with a fluid percussion device. ⋯ Immunohistochemically, more MSCs were observed in the injured brain tissues of mannitol-treated rats than in glycerol or PBS-treated rats at 24h after transplantation. Intra-arterial transplantation of MSCs combined with mannitol is an effective treatment in a TBI model of rats. This technique might be used for patients with diseases of the central nervous system including TBI.
-
Neuroscience letters · Oct 2013
Regional cerebral blood flow alterations in obstructive sleep apnea.
Obstructive sleep apnea (OSA) is a condition characterized by upper airway muscle atonia with continued diaphragmatic efforts, resulting in repeated airway obstructions, periods of intermittent hypoxia, large thoracic pressure changes, and substantial shifts in arterial pressure with breathing cessation and resumption. The hypoxic exposure and hemodynamic changes likely induce the structural and functional deficits found in multiple brain areas, as shown by magnetic resonance imaging (MRI) procedures. Altered cerebral blood flow (CBF) may contribute to these localized deficits; thus, we examined regional CBF, using arterial spin labeling procedures, in 11 OSA (age, 49.1±12.2 years; 7 male) and 16 control subjects (42.3±10.2 years; 6 male) with a 3.0-Tesla MRI scanner. ⋯ Lateralized, decreased CBF appeared near the left inferior cerebellar peduncles, left tapetum, left dorsal fornix/stria terminalis, right medial lemniscus, right red nucleus, right midbrain, and midline pons. Regional CBF values in OSA are significantly reduced in major sensory and motor fiber systems and motor regulatory sites, especially in structures mediating motor coordination; those reductions are often lateralized. The asymmetric CBF declines in motor regulatory areas may contribute to loss of coordination between upper airway and diaphragmatic musculature, and lead to further damage in the syndrome.
-
Neuroscience letters · Oct 2013
Modulation of thermal somatosensory thresholds within local and remote spinal dermatomes following cervical repetitive magnetic stimulation.
Repetitive magnetic stimulation (rMS) modulates thermal somatosensory function at both low (0.2-1.0Hz) and high (5.0-20.0Hz) frequencies within the conditioned dermatome. However the effects of 1Hz and 20Hz cervical (C6-C7) rMS on thermosensory thresholds and contact heat evoked potentials (CHEPs) tested within local and remote spinal dermatomes are not known. ⋯ Both 1 and 20Hz cervical rMS modulated warm detection threshold within the locally conditioned C6 dermatome. The concomitant increase in warm detection threshold within the T10 dermatome following 1Hz rMS provides evidence for remote neuromodulation of thermosensory function via intraspinal control mechanisms.
-
Neuroscience letters · Oct 2013
Up-regulation of spinal microglial Iba-1 expression persists after resolution of neuropathic pain hypersensitivity.
Spinal microglial activation plays a major role in the development of neuropathic pain following peripheral nerve injury. We here provide evidence for an elevated expression of the microglial marker Iba-1 in the lumbar dorsal horn ipsilateral to L5 spinal nerve transection that persists for at least 14 weeks, a time at which mechanical hypersensitivity had fully resolved. ⋯ We therefore conclude that microglia remain partly activated beyond the phase of pain hypersensitivity. Thus, the relation between microglial cells and neuropathic pain outcome is subject to change over time after nerve injury.
-
Neuroscience letters · Oct 2013
Intrathecal inhibition of calcium/calmodulin-dependent protein kinase II in diabetic neuropathy adversely affects pain-related behavior.
Calcium/calmodulin-dependent protein kinase II (CaMKII) is considered an important enzyme contributing to the pathogenesis of persistent pain. The aim of this study was to test whether intrathecal injection of CaMKII inhibitors may reduce pain-related behavior in diabetic rats. Male Sprague-Dawley rats were used. ⋯ Also, mAIP and KN93 injection significantly increased sensitivity to a mechanical stimulus 24h after i.t. injection. Intrathecal inhibition of CaMKII reduced the expression of total CaMKII and its CaMKII alpha isoform activity in diabetic dorsal horn, which was accompanied with an increase in pain-related behavior. Further studies about the intrathecal inhibition of CaMKII should elucidate its role in nociceptive processes of diabetic neuropathy.