Neuroscience letters
-
Neuroscience letters · Mar 2018
ReviewPersonalized medicine: Prediction of disease vulnerability in mood disorders.
Personalized or precision medicine is a medical discipline that proposes tailoring health care to each individual by integrating data from their genetic makeup, epigenetic modifications, other biomarkers, clinical symptoms and environmental exposures. Currently, patients typically present for treatment of mood disorders relatively late in the disease course and this is of great concern both because delay in attaining remission reduces the success of subsequent treatment and depressive episodes have negative cumulative effects on the brain and body. ⋯ We will review non-biological risk factors, genetic factors, epigenetic factors, as well as the roll of neuroimaging and electroencephalograms. Putting together this information will poise psychiatrists to make biological, system-based evaluations for their patients.
-
Neuroscience letters · Mar 2018
Anti-nociceptive effects of bupivacaine-encapsulated PLGA nanoparticles applied to the compressed dorsal root ganglion in mice.
Bupivacaine is a commonly used local anesthetic in postoperative pain management. We evaluated the effects of a prolonged, local delivery of bupivacaine on pain behavior accompanying a chronic compression of the dorsal root ganglion (CCD) - an animal model of radicular pain. Poly(lactide-coglycolide) (PLGA) nanoparticles encapsulating bupivacaine were injected unilaterally into the L3 and L4 DRGs of mice just before producing CCD by implanting a stainless-steel rod in the intervertebral foramen of each ganglion. ⋯ CCD induced behavioral hypersensitivity to nociceptive stimuli is known to be associated with a hyperexcitability of sensory neurons originating in the compressed ganglion. We hypothesize that bupivacaine-loaded PLGA nanoparticles may prevent the occurrence of this neuronal hyperexcitability without reducing the nociceptive information normally conducted from the periphery to the central nervous system. The slow, sustained delivery of bupivacaine by nanoparticles may provide a means of preventing the occurrence of postoperative neuronal hyperexcitability that could develop into chronic neuropathic pain.
-
Neuroscience letters · Feb 2018
Behavioral defects in a DCTN1G71A transgenic mouse model of Perry syndrome.
Perry syndrome is a rare neurodegenerative disease characterized by parkinsonism, depression/apathy, weight loss, and central hypoventilation. Our previously-conducted genome-wide association scan and subsequent studies identified nine mutations in DCTN1, the largest protein subunit of the dynactin complex, in patients with Perry syndrome. These included G71A in the microtubule-binding cytoskeleton-associated protein Gly-rich domain of p150Glued. ⋯ These behavioral defects parallel apathy-like symptoms and parkinsonism encountered in Perry syndrome. TDP-43 aggregates were not detected in the substantia nigra and cerebral cortex of the transgenic mice, although pathological aggregates of TDP-43 have been considered a major neuropathological feature of Perry syndrome. Our study reveals that a single mutation in the DCTN1 gene recapitulates symptoms of Perry syndrome patients, and provides evidence that DCTN1G71A transgenic mice represent a novel rodent model of Perry syndrome.
-
Neuroscience letters · Feb 2018
Sway regularity and sway activity in older adults' upright stance are differentially affected by dual task.
Age-related changes in postural control are attributed to visual, vestibular and proprioceptive dysfunctions, muscle weakness, and reduced availability of neural resources required for efficient balance control. Concurrent performance of complex cognitive tasks while standing or walking is expected to increase balance instability due to under-recruitment of brain resources and insufficient allocation of attention to the postural task. Both balance instability and attentional control of movements can, nonetheless, be determined from the center of pressure (CoP) measurements by examining the effects of dual-task on the amount of sway activity (as measured by CoP velocity - Vcop) and the statistical regularity of the CoP trajectory (the wavelet entropy of the signal - WEcop). ⋯ Furthermore, dual-task effects (% change in performance) on both sway characteristics were not significant (p > 0.1), suggesting that none of the attention demanding cognitive tasks used in the present study was sufficient to divert a critical amount of attentional resources from the postural task. Finally, performance of the mathematical counting (but not the word memorization) task was deteriorated from sitting to standing, however this effect was marginal (p = 0.075). Taken together, we proposed that while dual task could hinder balance control, postural stability may still be maintained by allocating more attentional resources to the postural task and reducing automatized control.
-
Neuroscience letters · Jan 2018
Longitudinal electrophysiological changes after cervical hemi-contusion spinal cord injury in rats.
To evaluate the longitudinal somatosensory evoked potentials (SEPs) and motor evoked potentials (MEPs) characterization from acute to chronic injury following cervical hemi-contusion spinal cord injury (SCI) in rats, and correlate the MEPs & SEPs to the behavioral outcomes. ⋯ Cervical hemi-contusion SCI led to persistent changes in MEPs & SEPs of the ipsilateral forelimb, ipsilateral impairment in motor function and unilateral cord tissue damage. Reliable electrophysiology assessment was obtained in chronic phase due to unstable MEPs & SEPs of bilateral forelimb immediately after injury, which might reflect the underlying pathological processes. The present study further confirmed the link of the MEPs to the behavioral outcomes, supporting the longitudinal electrophysiology assessment for neurological impairment after SCI.