Neuroscience letters
-
Neuroscience letters · Oct 2012
Cell degeneration is not a primary causer for Connexin26 (GJB2) deficiency associated hearing loss.
Connexin26 (Cx26, GJB2) mutations can induce congenital deafness and are responsible for ∼50% of nonsyndromic hearing loss in children. Mouse models show that Cx26 deficiency induces cochlear development disorder, hair cell loss, and spiral ganglion (SG) neuron degeneration. Hair cell loss and cell degeneration have been considered as a primary causer responsible for Cx26 deficiency associated hearing loss. ⋯ Functional tests show that hair cells in Cx26 KO mice functioned normally; outer hair cells retained electromotility. These data suggest that cell degeneration is not a primary causer of Cx26 deficiency associated hearing loss. Some mechanisms other than cell degeneration, such as cochlear development disorders, may play an essential role in this common hereditary deafness.
-
Neuroscience letters · Oct 2012
ReviewCellular and molecular approaches to motor neuron therapy in amyotrophic lateral sclerosis and spinal muscular atrophy.
Amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA) are progressive fatal neurodegenerative diseases. They differ in their disease development but have in common a loss of motor neuron as they progress. Research is ongoing to further understand the origin of these diseases but this common thread of motor neuron loss has provided a target for the development of therapies for both ALS and SMA. It is the linked fields of gene and cell therapy that are providing some of the most interesting therapeutic possibilities.
-
Neuroscience letters · Oct 2012
Facilitation and habituation of the startle reflex over the tonically active biceps brachii muscle contralateral to electrical stimuli.
The aim of the present investigation was to explore the impact of muscle contraction on startle reflex responses after electrical stimuli (single or trains of 3) and to study startle reflex habituation. The electromyogram was recorded over the tonically active biceps brachii muscle in 19 healthy subjects contralateral to electrical stimuli (9-12mA) that were delivered at 1.0 and 0.4Hz over the superficial radial nerve. The muscle contraction level was varied by loading weight on the subject's bent arm (0.0, 1.0 or 1.5kg). ⋯ Startle reflex amplitudes decreased significantly by the influence of preceding stimuli (p<0.05). This study provides evidence that the startle reflex can be significantly influenced by weight load, i.e. by volitional influences. Startle reflex investigation over a contracted limb muscle results in a high probability of startle release and thereby improved detection of SR habituation following preceding stimuli.