International journal of radiation oncology, biology, physics
-
Radiomics describes the extraction of multiple, otherwise invisible, features from medical images that, with bioinformatic approaches, can be used to provide additional information that can predict underlying tumor biology and behavior. ⋯ Although at an early stage of development, with many technical challenges remaining and a need for standardization, promise nevertheless exists that PET radiomics will contribute to personalized medicine, especially with the availability of increased computing power and the development of machine-learning approaches for imaging.
-
Int. J. Radiat. Oncol. Biol. Phys. · Nov 2018
ReviewRadiomics in Nuclear Medicine Applied to Radiation Therapy: Methods, Pitfalls, and Challenges.
Radiomics is a recent area of research in precision medicine and is based on the extraction of a large variety of features from medical images. In the field of radiation oncology, comprehensive image analysis is crucial to personalization of treatments. A better characterization of local heterogeneity and the shape of the tumor, depicting individual cancer aggressiveness, could guide dose planning and suggest volumes in which a higher dose is needed for better tumor control. ⋯ These difficulties mostly pertain to the variability of the imaging features as a function of the acquisition device and protocol, the robustness of the models with respect to that variability, and the interpretation of the radiomic models. Addressing the impact of the variability in acquisition and reconstruction protocols is needed, as is harmonizing the radiomic feature calculation methods, to ensure the reproducibility of studies in a multicenter context and their implementation in a clinical workflow. In this review, we explain the potential impact of positron emission tomography radiomics for radiation therapy and underline the various aspects that need to be carefully addressed to make the most of this promising approach.