Neuroscience
-
Intracerebral hemorrhage (ICH), a subtype of devastating stroke, carries high morbidity and mortality worldwide. CircRNA AFF2 (circAFF2) was significantly increased in ICH patients, but the underlying mechanism of circAFF2 is unknown. ⋯ CircAFF2 promotes the injury of neuronal cells and exacerbates ICH via increasing CLSTN3 by sponging miR-488, suggesting that circAFF2 may be a potential therapeutic target for ICH treatment.
-
Inflammasome activation and the consequent release of pro-inflammatory cytokines play a crucial role in the development of sensory/motor deficits following spinal cord injury (SCI). Immunomodulatory activities are exhibited by Schwann cells (SCs) and Wharton's jelly mesenchymal stem cells (WJ-MSCs). In this study, we aimed to compare the effectiveness of these two cell sources in modulating the absent in melanoma 2 (AIM2) inflammasome complex in rats with SCI. ⋯ Moreover, the administration of 3 × 105 cells resulted in motor recovery improvement in both treatment groups (P < 0.05). Although not statistically significant, these effects were more prominent in the SC-treated animals. In conclusion, SC therapy demonstrated greater efficacy in targeting AIM2 inflammasome activation and the associated inflammatory pathway in SCI experiments compared to WJ-MSCs.
-
Mitochondrial stress and endoplasmic reticulum stress (ERS) are known to be closely linked. ATF5 is a key regulator of mitochondrial stress and is involved in ERS regulation. Previously, we used a seizure model to demonstrate that ATF5 regulates mitochondrial stress. ⋯ However, these effects were significantly eliminated by lentiviral transduction with ATF5 interference. In addition, treatment of neurons with the mitochondrial antioxidant mitoquinone attenuated the onset of oxidative stress caused by ATF5 interference, partially restored the effect on ERS, and rescued cells from apoptosis. Collectively, these data show that ATF5 attenuates low-magnesium-induced neuronal apoptosis by inhibiting ERS through preventing the accumulation of mitochondrial ROS.
-
The benefits of aerobic exercises for memory are known, but studies of strength training on memory consolidation are still scarce. Exercise stimulates the release of metabolites and myokines that reaching the brain stimulate the activation of NMDA-receptors and associated pathways related to cognition and synaptic plasticity. The aim of the present study was to investigate whether the acute strength exercise could promote the consolidation of a weak memory. ⋯ Results showed that exercise induced the consolidation of a weak memory and this effect was dependent on the activation of NMDA-receptors. The hippocampal overexpression of BDNF and Synapsin I through exercise where NMDA-receptors dependent. Our findings showed that strength exercise strengthened fear memory consolidation and modulates the overexpression of BDNF and synapsin I through the activation of NMDA-receptors dependent signaling pathways.
-
Increasing evidence suggests that alternative splicing plays a critical role in pain, but its underlying mechanism remains elusive. Herein, we employed complete Freund's adjuvant (CFA) to induce inflammatory pain in mice. A combination of genomics research techniques, lentivirus-based genetic manipulations, behavioral tests, and molecular biological technologies confirmed that splicing factor Cwc22 mRNA and CWC22 protein were elevated in the spinal dorsal horn at 3 days after CFA injection. ⋯ Comprehensive transcriptome and genome analysis identified the secreted phosphoprotein 1 (Spp1) as a potential gene of CWC22-mediated alternative splicing, however, only Spp1 splicing variant 4 (Spp1 V4) was involved in thermal and mechanical nociceptive regulation. In conclusion, our findings demonstrate that spinal CWC22 regulates Spp1 V4 to participate in CFA-induced inflammatory pain. Blocking CWC22 or CWC22-mediated alternative splicing may provide a novel therapeutic target for the treatment of persistent inflammatory pain.