Neuroscience
-
Sucrose gap recordings from the dorsal roots of isolated, hemisected frog spinal cords were used to determine the effects of metabotropic L-glutamate receptor activation on primary afferent terminals by (+/-)-1-amino-trans-1,3-cyclopentane-dicarboxylic acid (t-ACPD). Dorsal root potentials evoked by ventral root volleys were significantly reduced by t-ACPD (30 microM), as were GABA- and muscimol-induced afferent terminal depolarizations. The effects of t-ACPD on GABA-depolarizations depended upon activation of group I metabotropic glutamate receptors, i.e. the effects were blocked by the group I/II antagonist (RS)-alpha-methyl-4-carboxyphenylglycine, but not by the group II antagonist alpha-methyl-(2S,3S,4S)-alpha-(carboxycyclopropyl)-glycine or the group III antagonist alpha-methyl-(S)-2-amino-4-phosphonobutyrate and were mimicked by the group I agonist 3,5-dihydroxyphenylglycine but were not mimicked by the group III agonist (S)-2-amino-4-phosphonobutyrate. ⋯ Low concentrations of N-methyl-D-aspartate (10 microM) mimicked the effect of t-ACPD on GABA responses. These results suggest that t-ACPD's depression of GABA depolarizations involves an indirect, three-stage mechanism that includes activation of Group I metabotropic glutamate receptors on interneurons and/or on afferent terminals, the release of L-glutamate from the latter structures, and the activation of N-methyl-D-aspartate receptors on primary afferent terminals. The depression of GABA depolarizations caused by the release of L-glutamate from afferent terminal and/or interneurons leads to a block of presynaptic inhibition (produced in the frog spinal cord by GABA) resulting in a positive feed-forward amplification of reflex transmission.
-
Nociceptin, also referred to as orphanin FQ, is believed to be the endogenous ligand for the ORL1. Nociceptin, when injected intracerebroventricularly to mice, produced hyperalgesia in behavioral tests. Recent studies have demonstrated the presence of ORL1 transcript in the spinal cord, and ORL1-like immunoreactivity has been localized to nerve fibers and somata throughout the spinal cord. ⋯ At a concentration of 1 microM, nociceptin hyperpolarized substantia gelatinosa neurons and suppressed spike discharges. The hyperpolarizing and synaptic depressant action of nociceptin was not reversed by the known opioid receptor antagonist naloxone (1 microM). Our result provides evidence that nociceptin-like peptide is concentrated in nerve fibers of the rat dorsal horn and that it may serve as an inhibitory transmitter within the substantia gelatinosa.