Neuroscience
-
Nociceptive-specific and multireceptive neurons in the lumbar dorsal horn are excited by noxious stimuli applied to the hindpaw and inhibited by noxious stimuli applied to distant body regions. Given that at least a subset of these neurons are part of the circuit for nociceptive reflexes, inhibition of nociceptive-specific and multireceptive neurons should inhibit nociceptive reflexes. Unfortunately, previous attempts to test this hypothesis have been inconclusive because of methodological differences between electrophysiological and behavioral experiments. ⋯ However, inhibition of nociceptive-specific and multireceptive neurons concomitant with a shift in the hindlimb reflex from flexion to extension suggests that these neurons are part of the circuit for flexor reflexes specifically. Presumably, lateral inhibition from the flexor to extensor circuit allows for the release of hindlimb extension when neurons in the flexion circuit are inhibited by a distant noxious stimulus. Such a system reduces the chance of injury by allowing for withdrawal reflexes to a single noxious stimulus and escape reactions, such as running and jumping, to multiple noxious stimuli.
-
The immunocytochemical distribution of retinoid receptors has been analysed in the mouse adult central nervous system. All retinoic acid receptors (alpha, beta and gamma) and retinoid X receptors (alpha, beta and gamma) were detected and found to exhibit specific patterns of expression in various areas of the telencephalon, diencephalon and rhombencephalon. The protein localization of several retinoic acid receptors and retinoid X receptors did not correlate with the distribution of the corresponding RNA transcripts, as studied by in situ hybridization and RNase protection assays. This suggests that the expression of retinoid receptors could be post-transcriptionally regulated, which may contribute to their specific localization in the adult nervous system.
-
The serotonin1A receptor partial agonist, buspirone, also displays antagonist properties at D2 receptors and is metabolized to the alpha2-adrenergic receptor antagonist, 1-(2-pyrimidinyl-piperazine). Herein, we examined mechanisms underlying the influence of buspirone alone, and in association with the serotonin reuptake inhibitor, fluoxetine, upon extracellular levels of serotonin, dopamine and noradrenaline simultaneously quantified in the frontal cortex of freely moving rats. Buspirone (0.01-2.5 mg/kg, s.c.) dose-dependently decreased dialysate levels of serotonin (-50%), and increased those of dopamine (+100%) and noradrenaline (+140%). ⋯ The facilitatory influence of buspirone upon resting and fluoxetine-stimulated dopamine and noradrenaline levels may also involve its serotonin1A properties. However, its principal mechanism of action in this respect is probably the alpha2-adrenergic antagonist properties of its metabolite, 1-(2-pyrimidinyl-piperazine). The present observations are of significance to experimental and clinical studies of the influence of buspirone upon depressive states, alone and in association with antidepressant agents.