Neuroscience
-
N-methyl-D-aspartate receptor activation regulates refractoriness of status epilepticus to diazepam.
Status epilepticus, prolonged intermittent or continuous seizure activity lasting 30 min or longer, is associated with high morbidity and mortality. The longer a seizure persists, the more refractory to treatment it becomes. The pilocarpine model of status epilepticus in rodents develops refractoriness to many first-line treatments as seizure duration increases, rendering it a good model to study refractory status epilepticus. ⋯ The results indicate that N-methyl-D-aspartate receptor activation plays a role in the seizure-induced refractoriness to benzodiazepines in status epilepticus, and blocking N-methyl-D-aspartate receptor activation converts refractory status epilepticus to a seizure responsive to benzodiazepine therapy. These findings offer insights into developing novel therapeutic interventions to improve the treatment of status epilepticus. Understanding the molecular mechanisms that mediate the effects of N-methyl-D-aspartate receptor activation on the development of resistance to treatment in status epilepticus will provide rational insights into more rapid methods to terminate seizure activity in this condition.
-
Opioids and receptor antagonists of excitatory amino acids attenuate mechanical allodynia and thermal hyperalgesia in animal models of neuropathic pain. Recently, a kainate receptor antagonist, 2S,4R-4-methylglutamate, has been developed but has not been tested for antinociceptive effects in animal models of neuropathic pain. We evaluated whether 2S,4R-4-methylglutamate attenuated responses to mechanical and thermal stimuli in uninjured (control) rats and increased responsiveness in rats with chronic constriction injury. ⋯ At four to eight days following chronic constriction injury, animals that displayed increased responsiveness to mechanical and thermal stimuli were injected intraperitoneally with either dizocilpine maleate (0.1 mg/kg), morphine (4 mg/kg), vehicle as controls, or 2S,4R-4-methylglutamate (25, 50, 75 or 100 mg/kg). 2S,4R-4-Methylglutamate (25, 50, 75 and 100 mg/kg) significantly attenuated the frequency of responses to mechanical stimuli (Wilcoxon, P < 0.05) and the latency of responses to thermal stimuli (analysis of variance and Duncan's, P < 0.05). Dizocilpine maleate and morphine, as expected, also reduced these responses. These results suggest that, in addition to opioid and N-methyl-D-aspartate receptors, kainate receptors may play a role in the maintenance of mechanical allodynia and thermal hyperalgesia associated with peripheral nerve injury.
-
In previous studies we have shown that electrical stimulation of the nucleus submedius inhibits the rat radiant heat-induced tail flick reflex, and that this antinociceptive effect is mediated by the ventrolateral orbital cortex and periaqueductal gray. The aim of the present study was to examine whether electrical stimulation of the nucleus submedius could inhibit the rat jaw-opening reflex, and to determine whether electrolytic lesions of the ventrolateral orbital cortex or the periaqueductal gray could attenuate the nucleus submedius-evoked inhibition. Experiments were performed on pentobarbital-anesthetized rats. ⋯ The onset of inhibition occured 60 ms after the beginning of nucleus submedius stimulation and lasted about 100 ms, as determined by varying the conditioning-test time interval. Furthermore, ipsilateral lesions of the ventrolateral orbital cortex or bilateral lesions of the lateral or ventrolateral parts of periaqueductal gray eliminated the nucleus submedius-evoked inhibition of the jaw-opening reflex. These data suggest that the nucleus submedius plays an important role in modulation of orofacial nociception, and provide further support for a hypothesis that the antinociceptive effect of nucleus submedius stimulation is mediated by ventrolateral orbital cortex and activation of a descending inhibitory system in the periaqueductal gray.
-
The activity and/or expression of the mitogen-activated protein kinases c-Jun N-terminal kinase 1, p38 and extracellular signal-regulated kinases 1/2, as well as their substrates, the transcription factors c-Jun and activating transcription factor-2, were examined following systemic application of kainate in the cortex and hippocampus of the adult rat brain. The protein expression levels of all three mitogen-activated protein kinases remained constant during the observation period. Unexpectedly, c-Jun N-terminal kinase 1 was the only mitogen-activated protein kinase activated in this model of excitotoxicity, its activity raised from between 1 and 3 h moderate basal to maximal levels between 6 and 12 h. ⋯ A second set of supershift experiments demonstrated that c-Jun, but not activating transcription factor 2, bound to activator protein-1 sites in the promoter of substance P and collagenase genes, but not of the cyclo-oxygenase-2 gene. Our results demonstrate that activation of c-Jun N-terminal kinase 1, phosphorylation of c-Jun and selective occupation of the c-jun promoter by activating transcription factor-2 or c-Jun are part of the neuronal response following excitotoxicity that is considered as the mechanism for neuronal apoptosis in vivo. Some of these findings differ substantially from in vitro experiments and underline the necessity to analyse the neuronal stress pathways in the adult brain.
-
Corticospinal neurons were identified in primary cultures of cortical neurons established from rats that had been injected with a fluorescent tracer to retrogradely label the corticospinal tract. We measured neurite outgrowth from corticospinal neurons after they had been co-cultured with astrocytes derived from either the cerebral cortex (homotopic region) or spinal cord (target region) of postnatal rats. The axon length of corticospinal neurons was increased when they were cultured on astroglial monolayers compared to a control monolayer (fibroblasts). ⋯ If the corticospinal neurons were co-cultured without physical contact with the astrocytes, axonal and dendritic outgrowth were not stimulated when compared to the fibroblast control. The data indicate that dendritic growth from corticospinal neurons is preferentially promoted by astrocytes from the cerebral cortex, whereas axonal growth is not influenced by the anatomical origin of the astrocytes. The impact of these findings on our understanding of the role of astrocytes in the development and regeneration of the corticospinal tract is discussed.