Neuroscience
-
The neuromodulatory actions of dopamine in the striatum and nucleus accumbens are likely to depend on the distribution of dopamine receptors on individual postsynaptic cells. To address this, we have visualized D1- and D2-like receptors on living medium-spiny GABAergic neurons in cultures from the striatum and nucleus accumbens using receptor antagonist fluoroprobes. We labeled D1-like receptors with rhodamine-SCH23390, D2-like receptors with rhodamine-N-(p-aminophenethyl)spiperone and synaptic sites with K+-stimulated uptake of the activity-dependent endocytic tracer FM-143. ⋯ The extensive presence of D1- and D2-like receptors on presynaptic varicosities of medium-spiny neurons suggests that the receptors are likely to play an important and interacting role in the presynaptic modulation of inhibitory synaptic transmission in the striatum and nucleus accumbens. The significant overlap in labeling suggests that D1-D2 interactions, which occur at the level of individual postsynaptic cells, the circuit level and the systems level, may also be mediated at the presynaptic level. Finally, the ability to visualize dopamine, as well as GABA(A), receptors on the individual synapses of living neurons now makes possible physiological studies of individual mesolimbic system synapses with known receptor expression.