Neuroscience
-
Corticotropin-releasing hormone, a major neuromodulator of the neuroendocrine stress response, is expressed in the immature hippocampus, where it enhances glutamate receptor-mediated excitation of principal cells. Since the peptide influences hippocampal synaptic efficacy, its secretion from peptidergic interneuronal terminals may augment hippocampal-mediated functions such as learning and memory. However, whereas information regarding the regulation of corticotropin-releasing hormone's abundance in CNS regions involved with the neuroendocrine responses to stress has been forthcoming, the mechanisms regulating the peptide's levels in the hippocampus have not yet been determined. ⋯ Secondly, hyperthermia stimulated expression of hippocampal immediate-early genes, as well as of corticotropin-releasing hormone. Finally, the mechanism of hippocampal corticotropin-releasing hormone induction required neuronal stimulation and was abolished by barbiturate administration. Taken together, these results indicate that neuronal stimulation may regulate hippocampal corticotropin-releasing hormone expression in the immature rat, whereas the peptide's expression in the hypothalamus is influenced by neuroendocrine challenges.
-
Nociceptin receptors are densely distributed in the nucleus tractus solitarius pre- and postsynaptically. This study tested whether nociceptin receptors in this brain area are involved in the modulation of baroreceptor reflex. In pentobarbital-anesthetized rats, pharmacological activation of nociceptin receptors with bilateral microinjection of a synthetic peptide agonist, nociceptin, into the nucleus tractus solitarius attenuated baroreflex sensitivity as demonstrated by a marked reduction in baroreflex bradycardia induced by a single dose of intravenous phenylephrine. ⋯ In contrast, injection of an opioid receptor antagonist, naloxone (5nmol), did not modify the inhibition of baroreflex sensitivity induced by nociceptin. Neither nocistatin nor naloxone injected into the nucleus alone had any detectable effect on baseline blood pressure and heart rate and baroreflex bradycardia. These data indicate that the newly discovered nociceptin receptors in the central nervous system possess an inhibitory influence on baroreflex transmission at the level of the nucleus tractus solitarius.
-
The cornea is innervated by three functional types of neurons: mechanosensory, polymodal and cold-sensitive neurons, all of which are presumed to be nociceptive. To explore if corneal neurons constitute a heterogeneous population according to their electrophysiological properties, intracellular recordings were made in vitro from trigeminal ganglion neurons innervating the cornea of the mouse. Corneal neurons were labelled with FluoroGold applied after a corneal epithelial wound. ⋯ Neurons with a slower action potential showing a hump in the repolarization phase are both corneal Adelta and C polymodal nociceptive neurons, a type of cell in which tetrodotoxin-resistant Na(+) channels have been identified. The possibility is raised that the small population of neurons with a very high input resistance are cold-sensitive neurons. From the present results, we suggest that the electrophysiological properties of primary sensory neurons innervating the cornea are attributable not only to their conduction velocities, but also to the functional characteristics of their peripheral nerve terminals.
-
The effects of different hormone replacement regimens on basal forebrain cholinergic function were examined by measuring changes in choline acetyltransferase activity and high affinity choline uptake in adult, ovariectomized, rats. Increases in choline acetyltransferase activity were detected in the frontal cortex (20. 1%) and olfactory bulbs (30.4%) following two weeks, but not four weeks, of repeated treatment with estrogen plus progesterone. Increases in high affinity choline uptake were detected in the frontal cortex (39.5-55.1%), hippocampus (34.9-48.9%), and olfactory bulbs (29.9%) after two weeks, but not four weeks, of either continuous estrogen administration, repeated progesterone administration, or repeated treatment with estrogen plus progesterone. ⋯ The findings demonstrate that short-term treatment with estrogen and/or progesterone can significantly enhance cholinergic function within specific targets of the basal forebrain cholinergic projections. Most important is the fact that the effects varied considerably according to the manner and regimen of hormone replacement and did not persist with prolonged treatment. These findings could have important implications for the effective use of hormone replacement strategies in the prevention and treatment of Alzheimer's disease and age-related cognitive decline in women.
-
The relation between serotonin release and electrical activity was examined in the nucleus raphe magnus of rats anesthetized with pentobarbital. Serotonin levels were monitored through a carbon-fiber microelectrode by fast cyclic voltammetry (usually at 1 Hz). Single-cell firing was recorded through the same microelectrode, except during the voltammetry waveform and associated electrical artifact (totaling about 30 ms). ⋯ Since serotonin levels and firing were usually inversely correlated, except near on(M) cells during pinch, we propose that serotonin is released from terminals of incoming nociceptive afferents. Prior neuroanatomical knowledge favors a midbrain origin for these afferents, while some of the drug findings suggest that their terminals possess inhibitory serotonergic autoreceptors, possibly of 5-HT1b subtype. The released serotonin could contribute to the inhibition of off(M) cells and excitation of on(M) cells by noxious stimulation, since inhibitory 5-HT1a receptors and excitatory 5-HT2 receptors, respectively, have previously been shown to dominate their serotonergic responses.