Neuroscience
-
Expression of glycoprotein 130 and the related receptors, including interleukin-6 receptor and leukemia inhibitory factor receptor, was examined in the murine cerebellum at the protein level. Western blot analysis revealed that interleukin-6 receptor, leukemia inhibitory factor receptor and glycoprotein 130 were expressed in the murine cerebellum. Immunoreactivities for interleukin-6 receptor, leukemia inhibitory factor receptor and glycoprotein 130 were strongly localized on the cell body of Purkinje cells, indicating that both interleukin-6 and leukemia inhibitory factor could act directly on Purkinje cells in murine adult mice. ⋯ Immunoreactivity for the interleukin-6 receptor was also detected in the cytoplasm of Purkinje cells. Injection of a murine hemopoietic cell line, FDC-P1 cells, transfected with the complementary DNA encoding the leukemia inhibitory factor led to a reduction in calbindin-positive dendrites of the Purkinje cells. The present results suggest that the leukemia inhibitory factor affects cerebellar functions through Purkinje cells.
-
Retracted Publication
The hippocampus in spontaneously hypertensive rats: a quantitative microanatomical study.
The influence of hypertension on the morphology of hippocampus was assessed in spontaneously hypertensive rats of two, four and six months and in age-matched normotensive Wistar-Kyoto rats. Values of systolic pressure were slightly increased in two-month-old spontaneously hypertensive rats in comparison with age-matched Wistar-Kyoto rats and augmented progressively with age in spontaneously hypertensive rats. No microanatomical changes were observed in the hippocampus of spontaneously hypertensive rats of two months in comparison with age-matched Wistar-Kyoto rats, whereas a decrease of white matter volume was observed in the CA(1) subfield and in the dentate gyrus of four-month-old spontaneously hypertensive rats. ⋯ The only change noticeable in the CA(3) subfield of six-month-old spontaneously hypertensive rats was a slight increase in the number of glial fibrillary acid protein-immunoreactive astrocytes. These findings indicate the occurrence of neuronal loss and of astrocyte changes in the hippocampus of spontaneously hypertensive rats of six months, being the CA(1) subfield the area most affected. The relevance of these neurodegenerative changes in hypertension and the possible occurrence of apoptosis and/or necrosis as expression of hypertensive brain damage is discussed.