Neuroscience
-
Nociceptin receptors are densely distributed in the nucleus tractus solitarius pre- and postsynaptically. This study tested whether nociceptin receptors in this brain area are involved in the modulation of baroreceptor reflex. In pentobarbital-anesthetized rats, pharmacological activation of nociceptin receptors with bilateral microinjection of a synthetic peptide agonist, nociceptin, into the nucleus tractus solitarius attenuated baroreflex sensitivity as demonstrated by a marked reduction in baroreflex bradycardia induced by a single dose of intravenous phenylephrine. ⋯ In contrast, injection of an opioid receptor antagonist, naloxone (5nmol), did not modify the inhibition of baroreflex sensitivity induced by nociceptin. Neither nocistatin nor naloxone injected into the nucleus alone had any detectable effect on baseline blood pressure and heart rate and baroreflex bradycardia. These data indicate that the newly discovered nociceptin receptors in the central nervous system possess an inhibitory influence on baroreflex transmission at the level of the nucleus tractus solitarius.
-
The effects of different hormone replacement regimens on basal forebrain cholinergic function were examined by measuring changes in choline acetyltransferase activity and high affinity choline uptake in adult, ovariectomized, rats. Increases in choline acetyltransferase activity were detected in the frontal cortex (20. 1%) and olfactory bulbs (30.4%) following two weeks, but not four weeks, of repeated treatment with estrogen plus progesterone. Increases in high affinity choline uptake were detected in the frontal cortex (39.5-55.1%), hippocampus (34.9-48.9%), and olfactory bulbs (29.9%) after two weeks, but not four weeks, of either continuous estrogen administration, repeated progesterone administration, or repeated treatment with estrogen plus progesterone. ⋯ The findings demonstrate that short-term treatment with estrogen and/or progesterone can significantly enhance cholinergic function within specific targets of the basal forebrain cholinergic projections. Most important is the fact that the effects varied considerably according to the manner and regimen of hormone replacement and did not persist with prolonged treatment. These findings could have important implications for the effective use of hormone replacement strategies in the prevention and treatment of Alzheimer's disease and age-related cognitive decline in women.
-
In order to characterize the localization of the sigma(1) receptor in the adult rat central nervous system, a polyclonal antibody was raised against a 20 amino acid peptide, corresponding to the fragment 143-162 of the cloned sigma(1) receptor protein. Throughout the rostrocaudal regions of the central nervous system extending from the olfactory bulb to the spinal cord, intense to moderate immunostaining was found to be associated with: (i) ependymocytes bordering the entire ventricular system, and (ii) neuron-like structures located within the parenchyma. Double fluorescence studies confirmed that, throughout the parenchyma, sigma(1) receptor-immunostaining was essentially associated with neuronal structures immunostained for the neuronal marker betaIII-tubulin. ⋯ Electron microscope studies indicated that sigma(1) receptor immunostaining was mostly associated with neuronal perikarya and dendrites, where it was localized to the limiting plasma membrane, the membrane of mitochondria and of some cisternae of the endoplasmic reticulum. At the level of synaptic contacts, intense immunostaining was associated with postsynaptic structures including the postsynaptic thickening and some polymorphous vesicles, whereas the presynaptic axons were devoid of immunostaining. These data indicate that the sigma(1) receptor antibody prepared here, represents a promising tool for further investigating the role of sigma(1) receptors.
-
Retracted Publication
The hippocampus in spontaneously hypertensive rats: a quantitative microanatomical study.
The influence of hypertension on the morphology of hippocampus was assessed in spontaneously hypertensive rats of two, four and six months and in age-matched normotensive Wistar-Kyoto rats. Values of systolic pressure were slightly increased in two-month-old spontaneously hypertensive rats in comparison with age-matched Wistar-Kyoto rats and augmented progressively with age in spontaneously hypertensive rats. No microanatomical changes were observed in the hippocampus of spontaneously hypertensive rats of two months in comparison with age-matched Wistar-Kyoto rats, whereas a decrease of white matter volume was observed in the CA(1) subfield and in the dentate gyrus of four-month-old spontaneously hypertensive rats. ⋯ The only change noticeable in the CA(3) subfield of six-month-old spontaneously hypertensive rats was a slight increase in the number of glial fibrillary acid protein-immunoreactive astrocytes. These findings indicate the occurrence of neuronal loss and of astrocyte changes in the hippocampus of spontaneously hypertensive rats of six months, being the CA(1) subfield the area most affected. The relevance of these neurodegenerative changes in hypertension and the possible occurrence of apoptosis and/or necrosis as expression of hypertensive brain damage is discussed.
-
We reviewed epidemiological and experimental studies of female gonadal hormone replacement therapy (HRT) on cognitive function in post-menopausal women and carried out meta-analyses. In healthy ageing women, HRT has small and inconsistent effects that include enhancement of verbal memory, abstract reasoning and information processing. Epidemiological studies show larger effects than experimental studies, which is not related to sample size. ⋯ Three recent controlled experimental studies using Premarin showed no effects of HRT in preventing further cognitive decline in women who already have Alzheimer's disease. Duration of treatment seems to play an important role, with beneficial effects declining-and even reversing-with longer treatment in women with Alzheimer's disease. Future research should further investigate the cognitive effect of different HRT preparations, serum estrogen levels, and the interactions of HRT with age, menopausal status and existing protective (e.g. education) and risk factors (e.g. smoking and apolipoprotein E genotype) for cognitive decline and Alzheimer's disease.