Neuroscience
-
Contrary to the classical view of a pre-determined wiring pattern, there is considerable evidence that cortical representation of body parts is continuously modulated in response to activity, behavior and skill acquisition. Both animal and human studies showed that following injury of the peripheral nervous system such as nerve injury or amputation, the somatosensory cortex that responded to the deafferented body parts become responsive to neighboring body parts. Similarly, there is expansion of the motor representation of the stump area following amputation. ⋯ Changes over a longer time likely involve other additional mechanisms such as long-term potentiation, axonal regeneration and sprouting. While cross-modal plasticity appears to be useful in enhancing the perceptions of compensatory sensory modalities, the functional significance of motor reorganization following peripheral injury remains unclear and some forms of sensory reorganization may even be associated with deleterious consequences like phantom pain. An understanding of the mechanism of plasticity will help to develop treatment programs to improve functional outcome.
-
Adult rat sensory neurones were maintained in short-term tissue culture and their response to histamine was studied by monitoring changes in intracellular [Ca(2+)] with Fura-2. The proportion of histamine-sensitive neurones increased as the concentration increased from 10 microM to 10 mM. The fraction of responding cells did not change significantly over the first week in culture. ⋯ A combination of U73122 and calcium-free medium abolished all responses to histamine. These data suggest that in addition to activating phospholipase C, high concentrations of histamine gate an influx of calcium that is independent of store depletion. The implications of these results for the transduction of pruritic stimuli is discussed.
-
One of us showed previously [Cuajungco and Lees (1998) Brain Res. 799, 188-129] that nitric oxide injected into the cerebrum in vivo causes zinc staining to appear in the somata of neurons and suggested that this staining of somata might be accompanied by a depletion (release) of zinc from axon terminals. In the present study, we confirm earlier results and report that there is a dramatic loss (apparent release) of histologically reactive zinc from the boutons of zinc-containing axons induced by infusion of nitric oxide into the brain in vivo. Rats were anesthetized with halothane and a cannula was inserted into the hippocampus. ⋯ Two hours after infusion, N-(6-methoxy-8-quinolyl)-para-toluenesulfonamide (TSQ) staining for zinc in the brains revealed that sperminenitric oxide, but not control (spermine only) produced up to 95% depletion of zinc staining from the zinc-containing boutons. TSQ-positive neurons were also conspicuous throughout injection sites, in both the cerebral cortex and in the cerebellar cortex, where the Purkinje neurons were especially vivid, despite the scarcity of zinc-containing axonal boutons. It is suggested that the TSQ-stainable zinc in somata might represent intracellular stores mobilized from within or permeating extracellular stores.
-
Both myelinated and unmyelinated afferents are implicated in transmitting diabetic neuropathic pain. Although unmyelinated afferents are generally considered to play a significant role in diabetic neuropathic pain, pathological changes in diabetic neuropathy occur mostly in myelinated A-fibers. In the present study, we first examined the role of capsaicin-sensitive C-fibers in the development of allodynia induced by diabetic neuropathy. ⋯ Furthermore, these afferent fibers had a lower threshold for activation and augmented responses to mechanical stimuli. Thus, our study suggests that capsaicin-sensitive C-fiber afferents are not required in the development of allodynia in this rat model of diabetes. Our electrophysiological data provide substantial new evidence that the abnormal sensory input from Adelta- and Abeta-fiber afferents may play an important role in diabetic neuropathic pain.
-
Opioid antinociception appears to be mediated at least in part by a pathway that projects from the periaqueductal gray (PAG) to the rostral ventromedial medulla (RVM), but the relationship between opioid receptors and PAG-RVM projection neurons is unclear. Previous electrophysiological studies have suggested that opioids act directly on some PAG neurons projecting to the RVM. However, immunoreactivity for neither the cloned mu-opioid receptor (MOR1) nor the cloned delta-opioid receptor (DOR1) has been observed in PAG cells retrogradely labeled from the RVM. ⋯ However, no significant difference was observed in the proportions of retrogradely labeled neurons labeled for DOR1 mRNA in the ventrolateral subregion compared to the dorsomedial subregion. We conclude that opioids are likely to exert direct effects on PAG-RVM projection neurons through both delta- and mu-opioid receptors. In addition, direct effects on PAG-RVM projection neurons from activation of MOR1 appear more likely to be exerted in the ventrolateral PAG than in the dorsomedial PAG.