Neuroscience
-
Numerous studies have investigated the expression of various cytokine families in the CNS after brain injury. The gp130 or interleukin (IL)-6-type cytokines have received a great deal of focus, and it is clear that they exhibit an acute and robust upregulation in various brain injury models. We are interested to determine, however, whether endogenously expressed cytokines in the CNS act in a direct neuromodulatory manner. ⋯ SOCS-2 displayed a relatively higher level of basal expression, particularly in CA3, and a mild and transient downregulation by 24 h. These findings corroborate the hypothesis that seizure-induced gp130 cytokines play a direct neuromodulatory role in the hippocampus. Since in our previous study we did not detect cytokine receptor expression in non-principal cells, it is unclear what elicits SOCS-3 expression in this population.
-
Comparative Study
Selective age-related loss of calbindin-D28k from basal forebrain cholinergic neurons in the common marmoset (Callithrix jacchus).
A significant number of the cholinergic neurons in the basal forebrain of the primate, but not the rodent brain contain the calcium binding protein calbindin-D28k (CB). Previous experiments in our laboratory have demonstrated a substantial age-related loss of CB from the human basal forebrain cholinergic neurons (BFCN). The present study investigated the possible age-related loss of CB from the BFCN in a non-human primate species, the common marmoset (Callithrix jacchus). ⋯ Therefore, the common marmoset represents an appropriate animal model in which the consequences of BFCN CB loss can be investigated in depth. Loss of CB from the aged BFCN is likely to reduce the capacity of these neurons to buffer intracellular calcium and to leave them vulnerable to insults which can result in increased calcium levels. The vulnerability of the CB-negative BFCN in the aged marmoset to various insults which disturb calcium homeostasis remains to be investigated.
-
Cisplatin, a commonly used antineoplastic agent, destroys the sensory hair cells in the cochlear and vestibular system leading to irreversible hearing loss and balance problems. Cisplatin-induced hair cell damage presumably occurs by apoptosis. Recent studies suggest that p53 may play an important role initiating cisplatin-induced apoptosis in some cell types. ⋯ Addition of PFT (20-100 microM) to cisplatin-treated cochlear and utricular cultures resulted in a dose-dependent increase in hair cell survival; suppressed the expression of p53 in Western blots and eliminated caspase-1 and caspase-3 labeling in cultures. These results suggest that the tumor suppressor protein, p53, plays a critical role in initiating apoptosis in cochlear and vestibular hair cells. Temporary suppression of p53 with PFT provides significant protection against cisplatin-induced hair cell loss and offers the potential for reducing the ototoxic, vestibulotoxic and neurotoxic side effects of cisplatin.
-
Comparative Study
Hypertension-induced changes in monoamine receptors in the prefrontal cortex of rhesus monkeys.
Hypertension affects approximately 60 million people in the United States. Recent studies have demonstrated that hypertension may produce progressive changes in the CNS. The present study is focused on reports in the literature that hypertension may significantly alter neurotransmitter systems, particularly dopamine (DA) and norepinephrine (NE). ⋯ Eight monkeys underwent surgical coarctation of the mid-thoracic aorta which produced sustained, untreated hypertension as defined by a systolic pressure above 150 mm Hg. Compared with normotensive controls, chronic, untreated hypertension produced a significant decrease in DA1 and NE alpha1 receptor binding and an increase in DA uptake (DAU) receptor binding in the prefrontal cortex. While the mechanisms by which untreated hypertension alters DA and NE receptors is not known, the use of this non-human primate model should provide the means to uncover neurobiological changes that occur with untreated hypertension.
-
Comparative Study
Frequency-dependent expression of corticotropin releasing factor in the rat's cerebellum.
Corticotropin releasing factor (CRF), localized in extrinsic afferents in the mammalian cerebellum, is defined as a neuromodulator within cerebellar circuits, and appears to be an essential element in the generation of long term depression, a proposed mechanism for motor learning. These physiological studies are based on exogenous application of CRF and do not address potential mechanisms that may influence endogenous release of the peptide. In the present study, immunohistochemistry was used to analyze changes in the lobular distribution of CRF-like immunoreactivity (LIR). ⋯ Quantitatively, the RIA studies indicate that there is a significant increase in CRF levels in the vermis, hemispheres and flocculus that correlates closely with stimulation frequency. In conclusion, stimulation of cerebellar afferents induces a significant change in the distribution and levels of CRF-LIR in climbing fibers, mossy fibers and glial cells. This suggests that the modulatory effects ascribed to CRF may influence a greater number of target neurons when levels of activity in afferent systems is increased.