Neuroscience
-
Comparative Study
Frequency-dependent expression of corticotropin releasing factor in the rat's cerebellum.
Corticotropin releasing factor (CRF), localized in extrinsic afferents in the mammalian cerebellum, is defined as a neuromodulator within cerebellar circuits, and appears to be an essential element in the generation of long term depression, a proposed mechanism for motor learning. These physiological studies are based on exogenous application of CRF and do not address potential mechanisms that may influence endogenous release of the peptide. In the present study, immunohistochemistry was used to analyze changes in the lobular distribution of CRF-like immunoreactivity (LIR). ⋯ Quantitatively, the RIA studies indicate that there is a significant increase in CRF levels in the vermis, hemispheres and flocculus that correlates closely with stimulation frequency. In conclusion, stimulation of cerebellar afferents induces a significant change in the distribution and levels of CRF-LIR in climbing fibers, mossy fibers and glial cells. This suggests that the modulatory effects ascribed to CRF may influence a greater number of target neurons when levels of activity in afferent systems is increased.
-
Comparative Study
The differentiation potential of precursor cells from the mouse lateral ganglionic eminence is restricted by in vitro expansion.
We have investigated whether the differentiation potential of attached cultures derived from the mouse lateral ganglionic eminence (LGE) is influenced by in vitro expansion. Primary neuronal cultures derived from the LGE give rise to neurons expressing the striatal projection neuron markers Islet1 (ISL1) and dopamine and cAMP-regulated phosphoprotein of 32 kilodaltons (DARPP-32) as well as the olfactory bulb interneuron marker Er81. Our previous results showed that after expansion in vitro, LGE precursor cells can be induced to differentiate into neurons which exhibit molecular characteristics of the LGE, such as the homeobox transcription factors DLX and MEIS2. ⋯ This indicates that the expansion of LGE precursor cells restricts their differentiation potential in vitro. Interestingly, the undifferentiated LGE cultures retain the expression of both the Isl1 and Er81 genes, suggesting that precursor cells for both striatal projection neurons and olfactory bulb interneurons are present in these cultures. Thus the restriction in differentiation potential of the expanded LGE cultures likely reflects deficiencies in the differentiation conditions used.
-
Comparative Study
Nociceptin/orphanin FQ knockout mice display up-regulation of the opioid receptor-like 1 receptor and alterations in opioid receptor expression in the brain.
The opioid receptor-like 1 receptor is a novel member of the opioid receptor family and its endogenous peptide ligand has been termed nociceptin and orphanin FQ. Activation of the opioid receptor-like 1 receptor by nociceptin/orphanin FQ in vivo produces hyperalgesia when this peptide is given supraspinally but analgesia at the spinal level. Nociceptin/orphanin FQ also reverses stress-induced analgesia, suggesting that the peptide has anti-opioid properties. ⋯ Mu-Receptors also showed significant differences between genotypes whilst changes in delta- and kappa- receptors were minor. In conclusion the region-specific up-regulation of the opioid receptor-like 1 receptor indicates a tonic role for nociceptin/orphanin FQ in some brain structures and may suggest the peptide regulates the receptor expression in these regions. The changes in the opioid receptor-like 1 receptor may relate to the anxiogenic phenotype of these animals but the observed change in mu-receptors does not correlate with altered morphine responses.
-
Comparative Study
A peripheral cannabinoid mechanism suppresses spinal fos protein expression and pain behavior in a rat model of inflammation.
The present studies were conducted to test the hypothesis that systemically inactive doses of cannabinoids suppress inflammation-evoked neuronal activity in vivo via a peripheral mechanism. We examined peripheral cannabinoid modulation of spinal Fos protein expression, a marker of neuronal activity, in a rat model of inflammation. Rats received unilateral intraplantar injections of carrageenan (3%). ⋯ The suppressive effects of WIN55,212-2 (30 microg intraplantarly) on carrageenan-evoked Fos protein expression and pain behavior were blocked by local administration of either the CB(2) antagonist SR144528 (30 microg intraplantarly) or the CB(1) antagonist SR141716A (100 microg intraplantarly). WIN55,212-3, the enantiomer of the active compound, also failed to suppress carrageenan-evoked Fos protein expression. These data provide direct evidence that a peripheral cannabinoid mechanism suppresses the development of inflammation-evoked neuronal activity at the level of the spinal dorsal horn and implicate a role for CB(2) and CB(1) in peripheral cannabinoid modulation of inflammatory nociception.
-
Cell surface glycoconjugates are thought to mediate cell-cell recognition and play roles in neuronal development and functions. We demonstrated here that exposure of neuronal cells to nanomolar levels of gangliosides Neu5Acalpha 8Neu5Acalpha 3Galbeta 4GlcCer, Galbeta 3GalNAcbeta 4(Neu5Acalpha 8Neu5Acalpha 3)Galbeta 4GlcCer (GD1b), Neu5Acalpha 3Galbeta 3GalNAcbeta 4(Neu5Acalpha 8Neu5Acalpha 3)Galbeta 4GlcCer (GT1b) or its oligosaccharide portion induced a rapid and transient activation of Ca2+/calmodulin-dependent protein kinase II (CaM-KII) in the subplasmalemma. Galbeta 3GalNAcbeta 4(Neu5Acalpha 3)Galbeta 4GlcCer (GM1), GalNAcbeta 4(Neu5Acalpha 3)Galbeta 4GlcCer, Neu5Acalpha 3Galbeta 4GlcCer, Neu5Acalpha 3Galbeta 3GalNAcbeta 4(Neu5Acalpha 3)Galbeta 4GlcCer (GD1a), and Neu5Acalpha 8Neu5Acalpha 3Galbeta 3GalNAcbeta 4(Neu5Acalpha 8Neu5Acalpha 3)-Galbeta 4GlcCer were ineffective. ⋯ The filopodia formation induced by the gangliosides may have a physiological relevance because long-term exposure of hippocampal neurons to GT1b oligosaccharide induced advanced dendritogenesis. Furthermore, exposure of cerebellar neurons to GT1b oligosaccharide facilitated CaM-KII-dependent dendritic outgrowth and branch formation of cerebellar Purkinje neurons, in which actin isoforms were localized to motile structures in dendrites. Thus, the ganglioside/CaM-KII signal plays a role in modulating dendritic morphogenesis by inducing cdc42-mediated actin reorganization.