Neuroscience
-
In the present study, the expression of the HuC/D RNA-binding proteins, a marker of neurons that have left the mitotic cycle, in cells migrating from the olfactory neuroepithelium toward the telencephalon in the chick embryo was investigated by means of immunofluorescence and confocal laser microscopy. Results showed that this migratory cell population is early and massively labeled by the a-HuC/D antibody starting from the first olfactory pit stage. At this developmental stage, olfactory migratory cells appeared to be the only neuronal population that expressed the HuC/D antigens in the whole embryo. ⋯ HuC/D immunopositivity persisted until stage 30 HH (about 6.5 days), the later developmental stage investigated in this study, when colocalization with GnRH was detected. Negativity to the anti-proliferating cell nuclear antigen (anti-PCNA) immunostaining, a marker of S-phase, showed that migratory olfactory cells have left the mitotic cycle. Altogether, these results suggest that we have identified the first population of post-mitotic neurons in the developing nervous system of the chick embryo.
-
Ionotropic glutamate receptors are ligand-gated ion channels that help mediate rapid excitatory neurotransmission in the CNS. alpha-Amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors are critical for synaptic plasticity in central nociceptive transmission. The current study was designed to investigate the role of the AMPA receptor subunit, GluR1, and its phosphorylated forms (at Ser-831 and Ser-845) in central sensitization in rat spinal cord. Western blots and immunohistochemistry were performed to examine the expression and localization of GluR1 and the phosphorylated forms of GluR1 (phospho-GluR1) at Ser-831 and Ser-845 with specific antibodies. ⋯ A significant upregulation of phospho-GluR1 both at Ser-831 and Ser-845 was found by 5 min after capsaicin treatment, and this increase lasted at least 60 min. Immunostaining showed that GluR1 and its phosphorylated forms were localized in the superficial laminae of dorsal horn and quantitative image analysis supported the immunoblotting results. Our findings are consistent with the suggestions that AMPA receptors show increased responsiveness because of their phosphorylation and that this may contribute to central sensitization following intradermal injection of capsaicin.
-
Comparative Study
Brain afferents to the lateral caudal ventrolateral medulla: a retrograde and anterograde tracing study in the rat.
The ventrolateral medulla (VLM) modulates autonomic functions, motor reactions and pain responses. The lateralmost part of the caudal VLM (VLMlat) was recently shown to be the VLM area responsible for pain modulation. In the present study, the brain sources of VLMlat afferent fibers were determined by tract-tracing techniques. ⋯ The present study gives an account of the brain regions putatively involved in triggering the modulatory actions elicited from the VLMlat. These include areas committed to somatosensory processing, autonomic control, somatic and visceral motor activity and affective reactions. The findings suggest that the VLMlat may play a major homeostatic role in the integration of nociception with other brain functions.
-
Comparative Study
Spatiotemporal distribution of gp130 cytokines and their receptors after status epilepticus: comparison with neuronal degeneration and microglial activation.
Although numerous studies have demonstrated the neurotrophic capacity of gp130 cytokines, it remains unclear whether endogenously expressed cytokines actually function in a direct neuromodulatory manner. Therefore, using the lithium-pilocarpine status epilepticus model, we performed a detailed in situ hybridization time-course study of five gp130 cytokines (interleukin [IL]-6, leukemia inhibitory factor [LIF], IL-11, oncostatin-m [OSM], and ciliary neurotrophic factor), gp130, and the receptors of the cytokines we found to be induced (IL-6 receptor [IL-6R], LIF receptor [LIF-R], and IL-11 receptor [IL-11R]). Additionally, to further understand the regulation of these cytokines, we compared their expression with the pattern of neuronal degeneration and microglial activation. ⋯ Microglial activation was maximal 24-48 h post-seizure. We speculate that gp130 cytokines play a paracrine, neuromodulatory role in the hippocampus since both before and after seizure, principal cells appear to be the major cell type expressing the receptors for these cytokines. Furthermore, we suggest that activity-dependent mechanisms may be involved in the regulation of cytokines expressed early, and that relatively late occurring cytokine expression may be elicited by injury-related stimuli.
-
Comparative Study
Quantification and localization of kainic acid-induced neurotoxicity employing a new biomarker of cell death: cleaved microtubule-associated protein-tau (C-tau).
Previous studies of neuronal degeneration induced by the neurotoxin, kainic acid, employed silver stain techniques that are non-quantitative or ELISA measurement of the non-neuronal protein, glial fibrillary acidic protein. As previous studies employed biomarkers that were either non-quantitative or non-neuronal, the present study employed a new neuronally localized biomaker of neuronal damage, cleaved microtubule-associated protein (MAP)-tau (C-tau). The time course of kainate neurotoxicity was quantitatively determined in several brain regions in the present study employing a C-tau specific ELISA. ⋯ Similar cleavage of rat MAP-tau to C-tau has been reported after neuronal degeneration induced by neurotoxic doses of methamphetamine and neuronal degeneration resulting from bacterial meningitis. In humans, C-tau proteolysis has been demonstrated to be a reliable biomarker of neuronal damage in traumatic brain injury and stroke where cerebrospinal C-tau levels are correlated with patient clinical outcome. These data suggest that C-tau proteolysis may prove a reliable species independent biomarker of neuronal degeneration regardless of source of injury.