Neuroscience
-
Comparative Study
Constant light housing attenuates circadian rhythms of mPer2 mRNA and mPER2 protein expression in the suprachiasmatic nucleus of mice.
Constant light (LL) or constant dark (DD) environmental lighting conditions cause a free-running period and activity reduction in the rodent behavioral circadian rhythm. In order to understand the molecular process underlying behavioral rhythms in LL or DD housing conditions, we examined the circadian profile of mPer2 mRNA and mPER2 in the suprachiasmatic nucleus (SCN), a main oscillator, of free-running mice. The circadian expression rhythm of mPer2 in the SCN was dampened under 7-day LL conditions, whereas that of mPER2 protein was moderately attenuated and its expression peak delayed. ⋯ On the other hand, LL or DD housing did not affect the mPer2 gene and its product in the cerebral cortex. The present results suggest that mPER2 circadian expression in the SCN corresponds well with behavioral circadian oscillation under LL or DD conditions. Thus, the behavioral circadian rhythm seems to correlate with molecular clock works in the SCN.
-
Comparative Study
Repeated i.v. cocaine exposure produces long-lasting behavioral sensitization in pregnant adults, but behavioral tolerance in their offspring.
Repeated exposure to cocaine during sensitive periods of forebrain development produces specific, long-lasting changes in the structure and function of maturing neural circuits. Similar regimens of drug exposure in adult animals with mature, homeostatically regulated nervous systems produce neuroadaptations that appear to be quite different in nature and magnitude. We studied the ability of cocaine to induce behavioral sensitization and/or tolerance following repeated administration of i.v. cocaine (3 mg/kg, twice daily) to pregnant rabbits during the period of peak differentiation within the rabbit cerebral cortex (embryonic day [E] 16-E25). ⋯ The offspring, having received cocaine during the prenatal sensitive period, showed profound behavioral tolerance to the amphetamine challenge. In contrast, the mothers of these offspring, who received cocaine at the same dose and duration, and experienced the same period of withdrawal, exhibited robust behavioral sensitization. These data indicate that specific adaptive changes in neural signaling and/or circuitry that occur in response to repeated exposure to psychostimulants are highly dependent upon the maturational state of the brain during which the exposure occurs.
-
Comparative Study
Efflux of human and mouse amyloid beta proteins 1-40 and 1-42 from brain: impairment in a mouse model of Alzheimer's disease.
Brain to blood transport is believed to be a major determinant of the amount of amyloid beta protein (AbetaP) found in brain. Impaired efflux has been suggested as a mechanism by which AbetaP can accumulate in the CNS and so lead to Alzheimer's disease (AD). To date, however, no study of the efflux of the form of AbetaP most relevant to AD, AbetaP1-42, has been conducted, even though a single amino acid substitution in AbetaP can greatly alter efflux. ⋯ There was a decrease in the saturable transport of mouse1-42 in SAMP8 mice regardless of age. Efflux of mouse1-40 and human1-42 was only by a non-saturable mechanism in young SAMP8 mice and their efflux was totally absent in aged SAMP8 mice. These differences in the efflux of the various forms of AbetaP among the three groups of mice supports the hypothesis that impaired efflux is an important factor in the accumulation of AbetaP in the CNS.
-
Comparative Study
Calbindin expression in the hamster suprachiasmatic nucleus depends on day-length.
The mammalian circadian clock located in the suprachiasmatic nucleus (SCN) of the hypothalamus controls many physiological and behavioral rhythms. The SCN is compartmentalized in two functionally distinct subregions: a dorsomedial subregion that rhythmically expresses clock genes, and a ventrolateral subregion which, in contrast, mainly expresses clock genes at a constant level. In the golden hamster, this ventrolateral part of the SCN contains a subpopulation of neurons expressing calbindin D28k. ⋯ We show that calbindin expression is negatively correlated to the day-length. The number of calbindin immunopositive neurons and calbindin mRNA levels were markedly increased in hamsters exposed to short photoperiods (light/dark cycle [LD] 6:18 and LD10:14) when compared with hamster exposed to long photoperiods (LD18:6 and LD14:10). This suggests that calbindin neurons are involved in the encoding of seasonal information by the SCN.
-
The formation of edema after traumatic brain injury (TBI) is in part associated with the disruption of the blood-brain barrier. However, the molecular and cellular mechanisms underlying these phenomena have not been fully understood. One possible factor involved in edema formation is vascular endothelial growth factor (VEGF). ⋯ The maximum number of astrocytes expressing VEGF was observed 4 days after TBI, and then the levels of astroglial VEGF expression declined gradually. Early invasion of brain parenchyma by VEGF-secreting neutrophils together with a delayed increase in astrocytic synthesis of this growth factor correlate with the biphasic opening of the blood-brain barrier and formation of edema previously observed after TBI. Therefore, these findings suggest that VEGF plays an important role in promoting the formation of post-traumatic brain edema.