Neuroscience
-
In the present study, serotonin (5-HT) responses of hippocampal pyramidal cornu ammonis 1 (CA1) neurons were studied in rats subjected twice daily for 21 days to unpredictable stressors. In hippocampal tissue from thus stressed rats mRNA expression of the 5-HT(1A) receptor and mineralo- as well as glucocorticoid receptors were examined with in situ hybridization. On average, stressed rats displayed increased adrenal weight and attenuated body weight gain compared with controls, supporting that the animals had experienced increased corticosterone levels due to the stress exposure. ⋯ The 5-HT(1A) receptor mRNA expression was not changed after chronic stress exposure, in any of the hippocampal areas. A small but significant increase in mineralocorticoid receptor mRNA expression was observed after stress in the dentate gyrus, while glucocorticoid receptor expression was unchanged. The data indicate that unpredictable stress exposure for 3 weeks results in suppression of 5-HT(1A) receptor-mediated responses, possibly due to posttranslational modification of the receptor.
-
Neonatal rats survive and avoid brain injury during periods of anoxia 25 times longer than adults. We hypothesized that oxygen activates and hypoxia suppresses NMDA receptor (NMDAR) responses in neonatal rat neurons, explaining the innate hypoxia tolerance of these cells. In CA1 neurons isolated from neonatal rat hippocampus (mean postnatal age [P] 5.8 days), hypoxia (PO(2) 10 mm Hg) reduced NMDA receptor-channel open-time percentage and NMDA-induced increase in [Ca(2+)](i) (NMDA DeltaCa(2+)) by 38 and 68% (P<0.01), respectively. ⋯ Compared with responses in 21% O(2), hypoxia (PO(2) 17 mm Hg) reduced currents from neonatal type NR1/NR2D receptors by 25%, increased currents from NR1/NR2C by 18%, and had no effect on NR1/NR2A or NR1/NR2B. Modulation of NMDARs by hypoxia may play an important role in the hypoxia tolerance of the mammalian neonate. In addition, oxygen sensing by NMDARs could play a significant role in postnatal brain development.
-
Comparative Study
Dehydroepiandrosterone 7-hydroxylase CYP7B: predominant expression in primate hippocampus and reduced expression in Alzheimer's disease.
Neurosteroids such as dehydroepiandrosterone (DHEA), pregnenolone and 17beta-estradiol are synthesized by cytochrome P450s from endogenous cholesterol. We previously reported a new cytochrome P450 enzyme, CYP7B, highly expressed in rat and mouse brain that metabolizes DHEA and related steroids by hydroxylation at the 7alpha position. Such 7-hydroxylation can enhance DHEA bioactivity in vivo. ⋯ We also measured CYP7B expression in Alzheimer's disease (AD). CYP7B mRNA was significantly decreased (approximately 50% decline; P<0.05) in dentate neurons from AD subjects compared with controls. A decline in CYP7B activity may contribute the loss of effects of DHEA with ageing and perhaps to the pathophysiology of AD.
-
Comparative Study
Intrathecal substance p-saporin attenuates operant escape from nociceptive thermal stimuli.
Destruction of neurons in the superficial dorsal horn that express substance P receptor (NK-1R) has been reported to block development of behavioral hypersensitivity following peripheral sensitization of nociceptors. Baseline sensitivity was not altered in these rat models that assessed innate reflex responses (i.e. hind-paw withdrawal to thermal or mechanical stimulation). In the present study, we evaluated effects of intrathecal substance P-saporin (SP-sap), a toxin selective for cells expressing NK-1R, on operant escape responses of rats to thermal stimulation. ⋯ Lick/guard responses were enhanced by mustard oil for both SP-sap and control animals. Administration of morphine (1.0 mg/kg, s.c.) before testing decreased escape responding at 47 degrees C for both controls and SP-sap rats. Thus, partial loss of NK-1R-expressing neurons in the superficial dorsal horn attenuated thermal nociceptive sensitivity and prevented secondary hyperalgesia when studied with an operant algesia assay, in contrast to innate reflexes which were less sensitive to modification by intrathecal SP-sap.