Neuroscience
-
Comparative Study
Side-specific olfactory conditioning leads to more specific odor representation between sides but not within sides in the honeybee antennal lobes.
Honeybees can be trained to associate odorants to sucrose reward by conditioning the proboscis extension response. Using this paradigm, we have recently shown that bees can solve a side-specific task: they learn simultaneously to discriminate a reinforced odor A from a non-reinforced odor B at one antenna (A+B-) and the reversed problem at the other antenna (A-B+). Side-specific (A+B-/B+A-) conditioning is an interesting tool to measure neurophysiological changes due to olfactory learning because the same odorant is excitatory (CS+) on one brain side and inhibitory (CS-) on the opposite side. ⋯ By representing odor vectors in a virtual olfactory space whose dimensions are the responses of 23 identified glomeruli, we found that distances between odor representations on each brain side were significantly higher in conditioned than in naive bees, but only for CS+ and CS-. However, the distance between CS+ and CS- representations was equal to that of naive individuals. Our work suggests that side-specific conditioning decorrelates odor representations between AL sides but not between CS+ and CS- within one AL.
-
Down syndrome is the most common birth defect associated with mental retardation. Identifying proteins that are aberrantly expressed therefore helps to understand how chromosomal imbalance leads to subnormal intelligence in Down syndrome. ⋯ While double-strand break repair protein rad 21 homologue, eukaryotic translation initiation factor 3 subunit 5, mixed lineage leukemia septin-like fusion protein-B and heat shock protein 75 were increased; beta-amyloid precursor-like protein 1, tropomyosin 4-anaplastic lymphoma kinase fusion oncoprotein type 2, Nck adaptor protein 2, Src homology domain growth factor receptor bound 2-like endophilin B2, beta tubulin, septin 7 and hematopoietic stem/progenitor cells 140 were decreased. The current data suggest that misexpression of proteins that have functions ranging from signaling to cellular structural organization could contribute to or reflect brain dysgenesis in Down syndrome.
-
Comparative Study
Effects of estrogen and raloxifene on neuroglia number and morphology in the hippocampus of aged female mice.
Hormone replacement therapy with the gonadal steroid estrogen or synthetic agents such as raloxifene, a selective estrogen receptor modulator, may affect cellular function in brains of postmenopausal women. In vitro studies suggest that 17beta estradiol and raloxifene can alter the microglial and astrocyte expression of immuno-neuronal modulators, such as cytokines, complement factors, chemokines, and other molecules involved in neuroinflammation and neurodegeneration. To directly test whether exogenous 17beta estradiol and raloxifene affect the number of glial cells in brain, C57BL/6NIA female mice aged 20-24 months received bilateral ovariectomy followed by s.c. placement of a 60-day release pellet containing 17beta estradiol (1.7 mg), raloxifene (10 mg), or placebo (cholesterol). ⋯ The results show that long-term 17beta estradiol treatment in aged female mice significantly lowered the numbers of astrocytes and microglial cells in dentate gyrus and CA1 regions compared with placebo. After long-term treatment with raloxifene, a similar reduction was observed in numbers of astrocytes and microglial cells in the hippocampal formation. These findings indicate that estrogen and selective estrogen receptor modulators can influence glial-mediated inflammatory pathways and possibly protect against age- and disease-related neuropathology.
-
Comparative Study
Temporal pattern of hippocampal high-frequency oscillations during sleep after stimulant-evoked waking.
Hippocampal ripple oscillations (140-200 Hz) are believed to be critically involved in the consolidation of memory traces during slow-wave sleep (SWS). We investigated the temporal pattern of ripple occurrence in relation to sleep phases following different types of waking. Amphetamine, the atypical wakening drug modafinil or non-pharmacological sleep deprivation lead to an increased ripple occurrence ("rebound") during the subsequent SWS episode. ⋯ At the end of the recovery period paradoxical sleep (PS) acted like waking, elevating ripple occurrence during subsequent SWS episodes. On the other hand, PS decreased ripple occurrence if recovery from the rebound was not yet complete. Thus occurrence and structure of ripple oscillations are regulated by the timing and duration of previous SWS, PS and waking episodes.
-
Comparative Study
Simultaneous induction of long-term potentiation in the hippocampus and the amygdala by entorhinal cortex activation: mechanistic and temporal profiles.
The medial temporal lobe, including the entorhinal cortex, the amygdala and the hippocampus, has an important role in learning and memory, and its circuits exhibit synaptic plasticity (long-term potentiation [LTP]). The entorhinal cortex is positioned to exert a potent influence on the amygdala and the hippocampus given its extensive monosynaptic projections to both areas. We therefore studied the effects of activation of the entorhinal cortex with simultaneous recording of LTP in the hippocampus and amygdala in the anesthetized rat. theta Burst stimulation of the lateral entorhinal cortex induced LTP simultaneously in the basal amygdaloid nucleus and in the dentate gyrus. ⋯ In addition we found that the basal amygdala as well as the dentate gyrus sustained late-phase LTP (10 h) which may participate in memory encoding and/or modulation processes. Overall, the results suggest a coordinating role for the entorhinal cortex by simultaneously modulating activity and plasticity in these structures, albeit through different mechanisms. Interactive encoding of this sort is believed to endow memories with a different, more integrative, quality than when either pathway is activated alone.