Neuroscience
-
Comparative Study
Localization of KCNQ5 in the normal and epileptic human temporal neocortex and hippocampal formation.
The KCNQ family of voltage-dependent non-inactivating K+ channels is composed of five members, four of which (KCNQ2-5) are expressed in the CNS and are responsible for the M-current. Mutations in either KCNQ2 or KCNQ3 lead to a hereditary form of dominant generalized epilepsy. Using specific antisera to the KCNQ2, KCNQ3 and KCNQ5 subunits, we found that KCNQ3 co-immunoprecipitated with KCNQ2 and KCNQ5 subunits, but no association was detected between KCNQ2 and KCNQ5. ⋯ In the sclerotic areas of the CA fields of epileptic patients, a marked loss of KCNQ5 immunoreactive pyramidal neurons was found in relation with the loss of neurons in these regions. However, in the regions adjacent to the sclerotic areas, the distribution and intensity of KCNQ5 immunostaining was apparently normal. The widespread distribution of KCNQ5 subunits, its persistence in pharmacoresistant epilepsy, along with the significant role of the M-current in the control of neuronal excitability, makes this protein a possible target for the development of anticonvulsant drugs.
-
Comparative Study
Stimulus-induced patterns of bioelectric activity in human neocortical tissue recorded by a voltage sensitive dye.
Stimulus-induced pattern of bioelectric activity in human neocortical tissue was investigated by use of the voltage sensitive dye RH795 and a fast optical recording system. During control conditions stimulation of layer I evoked activity predominantly in supragranular layers showing a spatial extent of up to 3000 microm along layer III. Stimulation in white matter evoked distinct activity in infragranular layers with a spatial extent of up to 3000 microm measured along layer V. ⋯ The activity pattern of those slices appeared atypical in regard to their deviations of the vertical and horizontal extent of activity, to their reduced spatial extent of activity during increased excitability, to their layer-related distribution of activity, and to the appearance of afterdischarges. Concluding, in 30% of the human temporal lobe slices atypical activity pattern occurred which obviously reflect intrinsic epileptiform properties of the resected tissue. The majority of slices showed stereotyped activity pattern without evidence for increased excitability.
-
The neuronal adaptor X11alpha interacts with the conserved -GYENPTY- sequence in the C-terminus of amyloid precursor protein (APP) or its Swedish mutation (APPswe) to inhibit Abeta40 and Abeta42 secretion. We hypothesized that the -YENP- motif essential for APP endocytosis is also essential for X11alpha-mediated effects on APP trafficking and metabolism, and that X11alpha modulates APP metabolism in both secretory and endocytic pathways. X11alpha failed to interact with the endocytic-defective APPswe mutants Y738A, N740A, or P741A, and thus did not modulate their trafficking or metabolism. ⋯ In contrast to endocytic-defective mutants, X11alpha interacted with APPswe Y743A as well as with APPswe. Thus, similar to APPswe, coexpression of X11alpha with APPswe Y743A retarded its maturation, prolonged its half-life, and inhibited APPs, Abeta40, and Abeta42 secretion. Collectively, these data suggest that by direct interaction with the APPswe -YENP- motif in the cytoplasmic tail, X11alpha modulated its trafficking and processing in both secretory and endocytic compartments, and may reduce secretion of Abeta generated in either pathway.
-
We hypothesised that, since anomalous neck proprioceptive input can produce perturbing effects on posture, neck muscle fatigue could alter body balance control through a mechanism connected to fatigue-induced afferent inflow. Eighteen normal subjects underwent fatiguing contractions of head extensor muscles. Sway during quiet stance was recorded by a dynamometric platform, both prior to and after fatigue and recovery, with eyes open and eyes closed. ⋯ Contractions of the same duration, but not inducing EMG signs of fatigue, had much less influence on body sway or subjective scoring. We argue that neck muscle fatigue affects mechanisms of postural control by producing abnormal sensory input to the CNS and a lasting sense of instability. Vision is able to overcome the disturbing effects connected with neck muscle fatigue.
-
Comparative Study
GABA(B1a), GABA(B1b) AND GABA(B2) mRNA variants expression in hippocampus resected from patients with temporal lobe epilepsy.
The aim of this study was to investigate the mRNA expression of the two GABA(B1) receptor isoforms and the GABA(B2) subunit, in human postmortem control hippocampal sections and in sections resected from epilepsy patients using quantitative in situ hybridisation autoradiography. Utilising human control hippocampal sections it was shown that the oligonucleotides employed were specific to the receptor. Hippocampal slices from surgical specimens obtained from patients with hippocampal sclerosis and temporal lobe epilepsy were compared with neurologically normal postmortem control subjects for neuropathology and GABA(B) mRNA expression. ⋯ Comparison of the expression of the three mRNAs between control and epileptic subjects showed significant decreases or increases in different hippocampal subregions. GABA(B) isoforms and subunit mRNA expression per remaining neuron was significantly increased in the hilus and dentate gyrus. These results demonstrate that altered GABA(B) receptor mRNA expression occurs in human TLE; possibly the observed changes may also serve to counteract ongoing hyperexcitability.