Neuroscience
-
Comparative Study
Desynchronisation of spontaneously recurrent experimental seizures proceeds with a single rhythm.
Here we investigate the temporal properties of recurrent seizure-like events (SLEs) in a low-[Mg(2+)] model of experimental epilepsy. Simultaneous intra- and extracellular electric signals were recorded in the CA3 region of rat hippocampal slices whereby cytosolic [Ca(2+)] transients were imaged by fluorescence detection. Recurrence pattern analysis was applied to give a measure of synchrony of simultaneously recorded intra- and extracellular electric signals and the SLE frequencies were extracted by complex wavelet analysis. ⋯ Release of gap junction blockade shortened both SLEs and their tonic phase indicating that persistent changes occurred via an altered gap junction coupling. We conclude that the initially precise temporal synchrony is gradually destroyed during ictal events with a single rhythm of continuously decreasing frequency. Blockade of gap junction coupling might prevent epileptic synchronisation.
-
Comparative Study
Effects of extracellular atp on axonal transport in cultured mouse dorsal root ganglion neurons.
In primary sensory neurons, extracellular ATP plays important roles in nociception and afferent neurotransmission. Here we investigated the effects of ATP on axonal transport in cultured adult mouse dorsal root ganglion neurons using video-enhanced microscopy. Continuous application (26 min) of ATP (100 microM) significantly increased axonal transport of membrane-bound organelles in anterograde and retrograde directions. ⋯ Our findings indicate that extracellular ATP is able to increase axonal transport in primary sensory neurons. The equal potency of ATP and UTP with no detectable response to ADP, alpha,beta-methylene ATP, or 2-methylthio ATP suggests the possible involvement of P2Y(2) receptors. Extracellular ATP may play an important role in the modulation of axonal transport in sensory neurons.
-
Comparative Study
A peripheral cannabinoid mechanism suppresses spinal fos protein expression and pain behavior in a rat model of inflammation.
The present studies were conducted to test the hypothesis that systemically inactive doses of cannabinoids suppress inflammation-evoked neuronal activity in vivo via a peripheral mechanism. We examined peripheral cannabinoid modulation of spinal Fos protein expression, a marker of neuronal activity, in a rat model of inflammation. Rats received unilateral intraplantar injections of carrageenan (3%). ⋯ The suppressive effects of WIN55,212-2 (30 microg intraplantarly) on carrageenan-evoked Fos protein expression and pain behavior were blocked by local administration of either the CB(2) antagonist SR144528 (30 microg intraplantarly) or the CB(1) antagonist SR141716A (100 microg intraplantarly). WIN55,212-3, the enantiomer of the active compound, also failed to suppress carrageenan-evoked Fos protein expression. These data provide direct evidence that a peripheral cannabinoid mechanism suppresses the development of inflammation-evoked neuronal activity at the level of the spinal dorsal horn and implicate a role for CB(2) and CB(1) in peripheral cannabinoid modulation of inflammatory nociception.
-
Cell surface glycoconjugates are thought to mediate cell-cell recognition and play roles in neuronal development and functions. We demonstrated here that exposure of neuronal cells to nanomolar levels of gangliosides Neu5Acalpha 8Neu5Acalpha 3Galbeta 4GlcCer, Galbeta 3GalNAcbeta 4(Neu5Acalpha 8Neu5Acalpha 3)Galbeta 4GlcCer (GD1b), Neu5Acalpha 3Galbeta 3GalNAcbeta 4(Neu5Acalpha 8Neu5Acalpha 3)Galbeta 4GlcCer (GT1b) or its oligosaccharide portion induced a rapid and transient activation of Ca2+/calmodulin-dependent protein kinase II (CaM-KII) in the subplasmalemma. Galbeta 3GalNAcbeta 4(Neu5Acalpha 3)Galbeta 4GlcCer (GM1), GalNAcbeta 4(Neu5Acalpha 3)Galbeta 4GlcCer, Neu5Acalpha 3Galbeta 4GlcCer, Neu5Acalpha 3Galbeta 3GalNAcbeta 4(Neu5Acalpha 3)Galbeta 4GlcCer (GD1a), and Neu5Acalpha 8Neu5Acalpha 3Galbeta 3GalNAcbeta 4(Neu5Acalpha 8Neu5Acalpha 3)-Galbeta 4GlcCer were ineffective. ⋯ The filopodia formation induced by the gangliosides may have a physiological relevance because long-term exposure of hippocampal neurons to GT1b oligosaccharide induced advanced dendritogenesis. Furthermore, exposure of cerebellar neurons to GT1b oligosaccharide facilitated CaM-KII-dependent dendritic outgrowth and branch formation of cerebellar Purkinje neurons, in which actin isoforms were localized to motile structures in dendrites. Thus, the ganglioside/CaM-KII signal plays a role in modulating dendritic morphogenesis by inducing cdc42-mediated actin reorganization.
-
Cisplatin, a commonly used antineoplastic agent, destroys the sensory hair cells in the cochlear and vestibular system leading to irreversible hearing loss and balance problems. Cisplatin-induced hair cell damage presumably occurs by apoptosis. Recent studies suggest that p53 may play an important role initiating cisplatin-induced apoptosis in some cell types. ⋯ Addition of PFT (20-100 microM) to cisplatin-treated cochlear and utricular cultures resulted in a dose-dependent increase in hair cell survival; suppressed the expression of p53 in Western blots and eliminated caspase-1 and caspase-3 labeling in cultures. These results suggest that the tumor suppressor protein, p53, plays a critical role in initiating apoptosis in cochlear and vestibular hair cells. Temporary suppression of p53 with PFT provides significant protection against cisplatin-induced hair cell loss and offers the potential for reducing the ototoxic, vestibulotoxic and neurotoxic side effects of cisplatin.