Neuroscience
-
Comparative Study
Developmental regulation of the A-type potassium-channel current in hippocampal neurons: role of the Kvbeta 1.1 subunit.
The rapidly inactivating A-type K+ current (IA) is prominent in hippocampal neurons; and the speed of its inactivation may regulate electrical excitability. The auxiliary K+ channel subunit Kvbeta 1.1 confers fast inactivation to Shaker-related channels and is postulated to affect IA. Whole-cell patch clamp recordings of rat hippocampal pyramidal neurons in primary culture showed a developmental decrease in the time constant of inactivation (tau(in)) of voltage-gated K+ currents: 17.9+/-1.5 ms in young neurons (5-7 days in vitro; n=53, mean+/-S. ⋯ This effect was most pronounced at -40 mV, where the ISI of the first pair of action potentials was nearly doubled. These data indicate that Kvbeta 1.1 contributes to the developmental control of IA in hippocampal neurons and that the magnitude of effect is sufficient to regulate electrical excitability. Viral-mediated antisense knockdown of Kvbeta 1.1 is capable of decreasing the electrical excitability of post-mitotic hippocampal neurons, suggesting this approach has applicability to gene therapy of neurological diseases associated with hyperexcitability.
-
Comparative Study
Ovarian hormone influences on the density of immunoreactivity for tyrosine hydroxylase and serotonin in the primate corpus striatum.
The serotonergic and dopaminergic inputs to the corpus striatum in human and non-human primates participate in diverse sensorimotor, cognitive, and affective functions, are implicated in dysfunction in diseases such as Parkinson's disease and schizophrenia, and are targets for many of the drugs used to treat these disorders. Sex differences in the incidence and/or clinical course of these disorders and in the effectiveness of related dopaminergic and serotonergic drug therapies suggest that primate striatal indolamines and catecholamines are also influenced by gonadal hormones. However, while well studied in rats, relatively little is known about precisely how gonadal steroids modulate stratial dopamine and serotonin systems in primates. ⋯ These analyses revealed clear examples of structure-, hemisphere-, and replacement regimen-specific effects of changes in circulating steroids on the densities of each afferent system examined. Further, the predominantly stimulatory effects observed occurred in striatal areas analogous to those suspected as sites of localized dopamine and/or serotonin compromise in Parkinson's disease and schizophrenia. Thus, the hormone actions identified in this study could hold relevance for some of the sex differences identified in relation to these disorders, including the findings of decreased incidence and/or symptom severity in women that have led to hypotheses of protective effects for estrogen.
-
The aim of present study was to examine the effect of a selective cyclooxygenase-2 (COX-2) inhibitor SC-236 (4 mg/kg) on the simultaneous responsiveness of spinal wide-dynamic range (WDR) neurons and single motor units (SMUs) from gastrocnemius soleus muscles to mechanical stimuli (pressure and pinch) and repeated suprathreshold (1.5xT, the intensity threshold) electrical stimuli with different frequencies (3 Hz, 20 Hz) under normal conditions and bee venom (BV, 0.2 mg/50 microl)-induced inflammation and central sensitization. During normal conditions, the responses of SMUs, but not WDR neurons, to mechanical and repeated electrical stimuli (3 Hz, wind-up) were depressed by systemic administration of SC-236 as well as its vehicle (100% dimethyl sulfoxide (DMSO)). The after-discharges of both the WDR neurons and the simultaneously recorded SMUs after electrical stimuli with 20 Hz were markedly depressed only by SC-236, indicating that the mechanisms underlying the generation of the C-fiber mediated late responses and the after-discharges may be different. ⋯ For electrical stimulation, the enhanced late responses and after-discharges, but not early responses, of both the WDR neurons and the simultaneously recorded SMUs were markedly depressed only by SC-236. This indicates that different central pharmacological mechanisms underlie the generation of these enhanced early, late responses, and after-discharges during BV-induced inflammation. The data suggest that the COX-2 inhibitor SC-236 apparently depress the activities of both spinal cord dorsal horn neuron and spinal withdrawal reflex during BV-induced sensitization, indicating that COX-2 plays an important role in the maintenance of central sensitization.
-
Comparative Study
Neuronal activity regulates GABAA receptor subunit expression in organotypic hippocampal slice cultures.
The postnatal expression of GABA(A) receptor subunit mRNAs in the rat brain, including the hippocampus, exhibits a unique temporal and regional developmental profile in vivo, which may be altered by external stimuli. Using the in situ hybridization technique we have now studied the in vitro expression of alpha1,alpha2, alpha 4, alpha 5, beta 1, beta 3, gamma 2, and gamma 3 subunit mRNAs of GABA(A) receptors in organotypic hippocampal slices cultured for 7 days. To find out whether neuronal activity regulates the subunit expression, a subset of cultures was chronically treated either with a GABA(A) receptor antagonist picrotoxin, or by a non-N-methyl-D-aspartate (non-NMDA)-receptor antagonist 6,7-dinitroquinoxaline-2,3-dione (DNQX). ⋯ In picrotoxin-treated cultures, the expression of alpha1, alpha 5 and gamma 2 mRNAs was significantly increased in pyramidal cell layers, and in DNQX-treated cultures the expression of alpha2 mRNA in CA3c and DG, and that of beta1 in DG. Changes in the expression of GABA(A) receptor subunit mRNAs in treated cultures suggest that neuronal activity can regulate their regional expression in vitro. Since the expression profile in untreated control cultures closely resembled that observed earlier in vivo, organotypic hippocampal slice cultures could serve as a good model system to study the regulatory mechanisms of receptor expression under well-controlled experimental conditions in the developing hippocampus.
-
Comparative Study
Acetoacetate protects hippocampal neurons against glutamate-mediated neuronal damage during glycolysis inhibition.
Glucose is the main substrate that fulfills energy brain demands. However, in some circumstances, such as diabetes, starvation, during the suckling period and the ketogenic diet, brain uses the ketone bodies, acetoacetate and beta-hydroxybutyrate, as energy sources. Ketone body utilization in brain depends directly on its blood concentration, which is normally very low, but increases substantially during the conditions mentioned above. ⋯ We have previously demonstrated that accumulation of extracellular glutamate after inhibition of its transporters, induces neuronal death in vivo during energy impairment induced by glycolysis inhibition. In the present study we have assessed the protective potentiality of the ketone body, acetoacetate, against glutamate-mediated neuronal damage in the hippocampus of rats chronically treated with the glycolysis inhibitor, iodoacetate, and in hippocampal cultured neurons exposed to a toxic concentration of iodoacetate. Results show that acetoacetate efficiently protects against glutamate neurotoxicity both in vivo and in vitro probably by a mechanism involving its role as an energy substrate.