Neuroscience
-
We hypothesised that, since anomalous neck proprioceptive input can produce perturbing effects on posture, neck muscle fatigue could alter body balance control through a mechanism connected to fatigue-induced afferent inflow. Eighteen normal subjects underwent fatiguing contractions of head extensor muscles. Sway during quiet stance was recorded by a dynamometric platform, both prior to and after fatigue and recovery, with eyes open and eyes closed. ⋯ Contractions of the same duration, but not inducing EMG signs of fatigue, had much less influence on body sway or subjective scoring. We argue that neck muscle fatigue affects mechanisms of postural control by producing abnormal sensory input to the CNS and a lasting sense of instability. Vision is able to overcome the disturbing effects connected with neck muscle fatigue.
-
Comparative Study
GABA(B1a), GABA(B1b) AND GABA(B2) mRNA variants expression in hippocampus resected from patients with temporal lobe epilepsy.
The aim of this study was to investigate the mRNA expression of the two GABA(B1) receptor isoforms and the GABA(B2) subunit, in human postmortem control hippocampal sections and in sections resected from epilepsy patients using quantitative in situ hybridisation autoradiography. Utilising human control hippocampal sections it was shown that the oligonucleotides employed were specific to the receptor. Hippocampal slices from surgical specimens obtained from patients with hippocampal sclerosis and temporal lobe epilepsy were compared with neurologically normal postmortem control subjects for neuropathology and GABA(B) mRNA expression. ⋯ Comparison of the expression of the three mRNAs between control and epileptic subjects showed significant decreases or increases in different hippocampal subregions. GABA(B) isoforms and subunit mRNA expression per remaining neuron was significantly increased in the hilus and dentate gyrus. These results demonstrate that altered GABA(B) receptor mRNA expression occurs in human TLE; possibly the observed changes may also serve to counteract ongoing hyperexcitability.
-
Electroencephalographic activity at the transition from wakefulness to sleep is characterized by the appearance of spindles (12-15 Hz) and slow wave rhythms including delta activity (1-4 Hz) and slow oscillations (0.2-1 Hz). While these rhythms originate within neocortico-thalamic circuitry, their emergence during the passage into slow wave sleep (SWS) critically depends on the activity of neuromodulatory systems. Here, we examined the temporal relationships between these electroencephalogram rhythms and the direct current (DC) potential recorded from the scalp in healthy men (n=10) using cross-correlation analyses. ⋯ Data indicate close links between increasing spindle, delta and slow oscillatory activity and the occurrence of a steep surface negative cortical DC potential shift during the transition from wake to SWS. Likewise, a DC potential shift toward surface positivity accompanies the disappearance of these oscillatory phenomena at the end of the non-REM sleep period. The DC potential shifts may reflect gradual changes in extracellular ionic (Ca2+) concentration resulting from the generation of spindle and slow wave rhythms, or influences of neuromodulating systems on cortical excitability thereby controlling the emergence of cortical spindle and slow wave rhythms at SWS transitions.
-
Comparative Study
Reduction of glycine receptor-mediated miniature inhibitory postsynaptic currents in rat spinal lamina I neurons after peripheral inflammation.
Peripheral inflammation may induce long-lasting sensitization in the central nociceptive system. Neurons in lamina I of the spinal dorsal horn play a pivotal role in the integration and relay of pain-related information. In rats we studied whether changes in passive and active membrane properties and/or alteration of glycine receptor-mediated inhibitory control of spinal lamina I neurons may contribute to central sensitization in a model of peripheral long-lasting inflammation (complete Freund's adjuvant, hindpaw). ⋯ The mean frequency of GlyR-mediated mIPSCs of lamina I neurons ipsilateral to the inflamed hindpaw was, however, significantly reduced by peripheral inflammation when compared with neurons from noninflamed animals. Principal passive and active membrane properties and firing patterns of spinal lamina I neurons were not changed by inflammation. These results indicate that long-lasting peripheral inflammation leads to a reduced glycinergic inhibitory control of spinal lamina I neurons by a presynaptic mechanism.
-
Comparative Study
The mouse nac1 gene, encoding a cocaine-regulated Bric-a-brac Tramtrac Broad complex/Pox virus and Zinc finger protein, is regulated by AP1.
NAC1 cDNA was identified as a novel transcript induced in the nucleus accumbens from rats chronically treated with cocaine. NAC1 is a member of the Bric-a-brac Tramtrac Broad complex/Pox virus and Zinc finger family of transcription factors and has been shown by overexpression studies to prevent the development of behavioral sensitization resulting from repeated cocaine treatment. This paper reports the cloning and characterization of the corresponding gene. ⋯ Activation of immediate early genes such as c-fos and c-jun following chronic drug treatments has been well characterized. The present data describe one potential regulatory cascade involving these transcription factors and activation of NAC1. Identification of drug induced alterations in gene expression is key to understanding the types of molecular adaptations underlying addiction.