Neuroscience
-
Comparative Study
Brainstem prolactin-releasing peptide neurons are sensitive to stress and lactation.
Prolactin-releasing peptide (PrRP) was originally thought to participate in the control of adenohypophyseal prolactin secretion, but its predominant expression in a subset of medullary noradrenergic neurons is more in line with roles in interoceptive and/or somatosensory information processing. To better define functional contexts for this peptide system, immuno- and hybridization histochemical methods were used to monitor the capacity of PrRP neurons to display activational responses to lactation, suckling, acute footshock or hypotensive hemorrhage. PrRP mRNA signal was reduced in the medulla of lactating dams, relative to both male and diestrus female controls, with cell counts revealing 42% and 43% reductions in the number of positively hybridized cells in the nucleus of the solitary tract (NTS) and ventrolateral medulla, respectively. ⋯ A substantially greater fraction of the total medullary PrRP population exhibited sensitivity to footshock than hemorrhage (71 versus 39%, respectively). These results suggest that medullary PrRP neurons are negatively regulated by (presumably hormonal) changes in lactation, and are not recruited to activation by suckling stimuli. These populations exhibit differential sensitivity to distinct acute stressors, and may participate in the modulation of adaptive neuroendocrine and autonomic responses to each.
-
Comparative Study
Learning deficits in forebrain-restricted brain-derived neurotrophic factor mutant mice.
Brain-derived neurotrophic factor (BDNF) participates in synaptic plasticity and the adaptive changes in the strength of communication between neurons thought to underlie aspects of behavioral adaptation. By selectively deleting BDNF from the forebrain of mice using the Cre site-specific DNA recombinase, we were able to study the requirements for BDNF in behaviors such as learning and anxiety. Early-onset forebrain-restricted BDNF mutant mice (Emx-BDNF(KO)) that develop in the absence of BDNF in the dorsal cortex, hippocampus, and parts of the ventral cortex and amygdala failed to learn the Morris Water Maze task, a hippocampal-dependent visuo-spatial learning task. ⋯ Emx-BDNF(KO) mice did not exhibit altered sensory processing and gating, as measured by the acoustic startle response or prepulse inhibition of the startle response. Although they were less active in an open-field arena, they did not show alterations in anxiety, as measured in the elevated-plus maze, black-white chamber or mirrored chamber tasks. Combined, these data indicate that although an absence of forebrain BDNF does not disrupt acoustic sensory processing or alter baseline anxiety, specific forms of learning are severely impaired.
-
We have conducted studies to determine the potential of dietary factors to affect the capacity of the brain to compensate for insult. Rats were fed with a high-fat sucrose (HFS) diet, a popularly consumed diet in industrialized western societies, for 4 weeks before a mild fluid percussion injury (FPI) or sham surgery was performed. FPI impaired spatial learning capacity in the Morris water maze, and these effects were aggravated by previous exposure of the rats to the action of the HFS diet. ⋯ The combination of FPI and the HFS diet had more dramatic effects on the active state (phosphorylated) of synapsin I and CREB. There were no signs of neurodegeneration in the hippocampus of any rat group assessed with Fluoro-Jade B staining. The results suggest that FPI and diet impose a risk factor to the molecular machinery in charge of maintaining neuronal function under homeostatic and challenging situations.
-
We previously reported that partial sciatic nerve ligation (PSNL) dramatically up-regulates cyclooxygenase 2 (COX2) in injured sciatic nerve, and local injection of the COX inhibitor, ketorolac, reverses tactile allodynia and suppresses increased phosphorylation of the transcription factor cAMP responsive element binding protein [Eur J Neurosci 15 (2002) 1037]. These findings suggest that peripheral prostaglandins (PGs) are over-produced and contribute to the central plasticity and the maintenance of neuropathic pain after nerve injury. PGs, particularly PGE2, are well known to facilitate the release of the pro-nociceptive neuropeptide substance P (SP) and calcitonin gene-related peptide (CGRP) from primary sensory afferents. ⋯ Since abundant production of PGs during inflammation is well documented, we further examined the effect of intraplantar ketorolac on neuropeptide expression in the dorsal horn following carrageenan inflammation. We observed that co-administration of ketorolac with carrageenan in the hindpaw also reduced SP- and dynorphin-IR in the ipsilateral and contralateral dorsal horn. These findings are in contrast to our hypothesis, suggesting that peripherally over-produced PGs following nerve injury and inflammation possibly contribute to the production of SP and CGRP in primary sensory neurons, to the up-regulation of dynorphin in the dorsal horn neurons, and finally to the mechanisms of neuropathic and inflammation pain.
-
Comparative Study
Apolipoprotein E isoform-specific regulation of dendritic spine morphology in apolipoprotein E transgenic mice and Alzheimer's disease patients.
Dendritic spines are postsynaptic sites of excitatory input in the mammalian nervous system. Apolipoprotein (apo) E participates in the transport of plasma lipids and in the redistribution of lipids among cells. A role for apoE is implicated in regeneration of synaptic circuitry after neural injury. ⋯ These age dependent differences in the effects of apoE isoforms on neuronal integrity may relate to the increased risk of dementia in aged individuals with the apoE4 allele. Significantly in human brain, apoE4 dose correlated inversely with dendritic spine density of DG neurons cell in the hippocampus of both AD (P=0.0008) and aged normal controls (P=0.0015). Our findings provide one potential explanation for the increased cognitive decline seen in aged and AD patients expressing apoE4.