Neuroscience
-
The metabolic events of neuronal energetics during functional activity are still partially unexplained. In particular, lactate (and not glucose) was recently proposed as the main substrate for neurons during activity. ⋯ In the present study we used a time-resolved proton magnetic resonance spectroscopy strategy in order to analyse the evolution of lactate during the early seconds following a brief visual stimulation (event-related design). A significant decrease in lactate concentration was observed 5 s after the stimulation, while a recovering of the baseline was observed at 12 s.
-
Converging evidence in schizophrenia suggests prefrontal cortical neuronal deficits that correlate with exaggerated subcortical dopamine (DA) functions: Excitotoxic lesion of the ventral hippocampus (VH) in neonatal rats is widely considered a putative animal model of schizophrenia as they lead to characteristic post-pubertal emergence of behavioral and cognitive abnormalities suggesting a developmental change in the neural circuits comprising the prefrontal cortex (PFC) and subcortical DA. Nerve growth factor inducible-B (NGFI-B, also known as Nur77), an orphan nuclear receptor and transcriptional regulator, is constitutively expressed in the target structures of DA pathways. It acts as an immediate early gene with rapid modulation of its mRNA expression by stress, DA and antipsychotic drugs. ⋯ Amphetamine treatment increased the expression of NGFI-B mRNA in the mPFC, CC, striatum and NAcc in both control and lesioned animals of both ages. Interestingly, however, striatal and NAcc regions of lesioned rats showed a significantly greater effect of amphetamine at PD56. The data suggest that nVH lesions lead to delayed changes in PFC gene expression along with functional DAergic hyperactivity in subcortical regions.
-
Comparative Study
Complete sparing of spatial learning following posterior and posterior plus anterior cingulate cortex lesions at 10 days of age in the rat.
Neonatal posterior cingulate cortex lesions spare the spatial deficits that characterize adult lesions. The present experiments examined the possibility that the anterior cingulate cortex mediates the spared spatial behavior. Rats were given bilateral lesions of the posterior cingulate cortex or anterior plus posterior cingulate cortex on postnatal days 4 (P4), 10 (P10), or in adulthood (P120). ⋯ Adult animals were impaired on place learning relative to controls whereas place learning was spared in all the neonatal groups and sparing was complete in the group receiving day 10 lesions. The results are discussed in relation to neural mechanisms, including fiber rerouting, synaptic changes and generation of new neurons, that may mediate spared spatial following neonatal posterior cingulate cortex lesions. Also discussed is evidence indicating that the neonatal brain, especially the day 10, has a special ability to compensate for injury.
-
Comparative Study
Sexual dimorphism in the contribution of protein kinase C isoforms to nociception in the streptozotocin diabetic rat.
The contribution of second messenger signaling, glucose level and sex hormones to sexual dimorphism in the streptozotocin model of diabetic painful peripheral neuropathy was evaluated. Streptozotocin induced elevation of blood glucose and mechanical hyperalgesia (measured by the Randall-Selitto paw-withdrawal test) were both greater in female rats. Ovariectomy abolished and estrogen implants reconstituted this sexual dimorphism; gonadectomy in males had no effect. ⋯ Inhibitors of protein kinase A, protein kinase C (non-selective), protein kinase G and nitric oxide synthase attenuated hyperalgesia equally in both sexes. Higher blood glucose levels in diabetic females were also sex hormone dependent, and magnitude of hyperalgesia correlated with blood glucose level in diabetic male and female rats. These results demonstrate sexual dimorphism in diabetic hyperalgesia, mediated by sex hormone dependent differences in protein kinase Cepsilon and protein kinase Cdelta signaling and blood glucose levels and suggest that sex may be an important factor to be considered in the treatment of symptomatic diabetic neuropathy.
-
We recently reported that exogenously applied orphanin FQ, the endogenous ligand for opioid receptor-like 1 (ORL(1)) receptor, produces sex-specific modulation of trigeminal nociception, and that estrogen contributes to these sex-related differences. Estrogen could produce these sex-related differences by altering the expression of the ORL(1)-receptor gene in the trigeminal nucleus caudalis. Utilizing in situ hybridization, we compared levels of ORL(1) receptor mRNA and investigated its colocalization with estrogen receptor mRNA in trigeminal neurons. ⋯ Levels were reduced to proestrus levels in these regions following estradiol replacement. Our results also showed that ORL(1) receptor mRNA is present in majority of estrogen receptor (alpha and/or beta) mRNA-containing neurons. We conclude that there are sex-related differences in the ORL(1)-receptor gene expression in the trigeminal nucleus caudalis, which appear to be determined in part by estrogen levels.